These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30804244)

  • 1. Mucin-like glycopolymer gels in electrosensory tissues generate cues which direct electrolocation in amphibians and neuronal activation in mammals.
    Melrose J
    Neural Regen Res; 2019 Jul; 14(7):1191-1195. PubMed ID: 30804244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan.
    Melrose J
    Glycobiology; 2024 Apr; 34(3):. PubMed ID: 38376199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Consequences of Keratan Sulfate Sulfation in Electrosensory Tissues and in Neuronal Regulation.
    Melrose J
    Adv Biosyst; 2019 Apr; 3(4):e1800327. PubMed ID: 32627425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure, number, distribution and innervation of electroreceptors and mechanoreceptors in the bill skin of the platypus, Ornithorhynchus anatinus.
    Manger PR; Pettigrew JD
    Brain Behav Evol; 1996; 48(1):27-54. PubMed ID: 8828862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory receptors in monotremes.
    Proske U; Gregory JE; Iggo A
    Philos Trans R Soc Lond B Biol Sci; 1998 Jul; 353(1372):1187-98. PubMed ID: 9720114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Functional Components of the Skate Sensory Organ Ampullae of Lorenzini.
    Zhang X; Xia K; Lin L; Zhang F; Yu Y; St Ange K; Han X; Edsinger E; Sohn J; Linhardt RJ
    ACS Chem Biol; 2018 Jun; 13(6):1677-1685. PubMed ID: 29708722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive electroreception in aquatic mammals.
    Czech-Damal NU; Dehnhardt G; Manger P; Hanke W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Jun; 199(6):555-63. PubMed ID: 23187861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keratan Sulphate in the Tumour Environment.
    Hayes AJ; Melrose J
    Adv Exp Med Biol; 2020; 1245():39-66. PubMed ID: 32266652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrolocation in the platypus--some speculations.
    Proske U; Gregory E
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Dec; 136(4):821-5. PubMed ID: 14667847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton conductivity in ampullae of Lorenzini jelly.
    Josberger EE; Hassanzadeh P; Deng Y; Sohn J; Rego MJ; Amemiya CT; Rolandi M
    Sci Adv; 2016 May; 2(5):e1600112. PubMed ID: 27386543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroreception and electrolocation in platypus.
    Scheich H; Langner G; Tidemann C; Coles RB; Guppy A
    Nature; 1986 Jan 30-Feb 5; 319(6052):401-2. PubMed ID: 3945317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroreception in the Guiana dolphin (Sotalia guianensis).
    Czech-Damal NU; Liebschner A; Miersch L; Klauer G; Hanke FD; Marshall C; Dehnhardt G; Hanke W
    Proc Biol Sci; 2012 Feb; 279(1729):663-8. PubMed ID: 21795271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroreception, electrogenesis and electric signal evolution.
    Crampton WGR
    J Fish Biol; 2019 Jul; 95(1):92-134. PubMed ID: 30729523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The central projection of electrosensory information in the platypus.
    Iggo A; Gregory JE; Proske U
    J Physiol; 1992 Feb; 447():449-65. PubMed ID: 1593454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental origin of shark electrosensory organs.
    Freitas R; Zhang G; Albert JS; Evans DH; Cohn MJ
    Evol Dev; 2006; 8(1):74-80. PubMed ID: 16409384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of the monotreme organ of Corti and macula lagena.
    Ladhams A; Pickles JO
    J Comp Neurol; 1996 Mar; 366(2):335-47. PubMed ID: 8698891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anatomy and fine structure of the echidna Tachyglossus aculeatus snout with respect to its different trigeminal sensory receptors including the electroreceptors.
    Andres KH; von Düring M; Iggo A; Proske U
    Anat Embryol (Berl); 1991; 184(4):371-93. PubMed ID: 1952110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct development of the trigeminal sensory nuclei in platypus and echidna.
    Ashwell KW; Hardman CD
    Brain Behav Evol; 2012; 79(4):261-74. PubMed ID: 22722086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomy of the mechanosensory lateral line canal system and electrosensory ampullae of Lorenzini in two species of sawshark (fam. Pristiophoridae).
    Wueringer BE; Winther-Janson M; Raoult V; Guttridge TL
    J Fish Biol; 2021 Jan; 98(1):168-177. PubMed ID: 33006147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroreceptors in the platypus.
    Gregory JE; Iggo A; McIntyre AK; Proske U
    Nature; 1987 Mar 26-Apr 1; 326(6111):386-7. PubMed ID: 3561478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.