BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 30804523)

  • 41. Dietary salt reduction in hypertension--what is the evidence and why is it still controversial?
    Chrysant GS; Bakir S; Oparil S
    Prog Cardiovasc Dis; 1999; 42(1):23-38. PubMed ID: 10505491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Renal denervation and CD161a immune ablation prevent cholinergic hypertension and renal sodium retention.
    Raikwar N; Braverman C; Snyder PM; Fenton RA; Meyerholz DK; Abboud FM; Harwani SC
    Am J Physiol Heart Circ Physiol; 2019 Sep; 317(3):H517-H530. PubMed ID: 31172810
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The interplay between Angiotensin II, TLR4 and hypertension.
    Biancardi VC; Bomfim GF; Reis WL; Al-Gassimi S; Nunes KP
    Pharmacol Res; 2017 Jun; 120():88-96. PubMed ID: 28330785
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of mineralocorticoid action in the brain in salt-sensitive hypertension.
    Oki K; Gomez-Sanchez EP; Gomez-Sanchez CE
    Clin Exp Pharmacol Physiol; 2012 Jan; 39(1):90-5. PubMed ID: 21585422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Infiltrating T lymphocytes in the kidney increase oxidative stress and participate in the development of hypertension and renal disease.
    De Miguel C; Guo C; Lund H; Feng D; Mattson DL
    Am J Physiol Renal Physiol; 2011 Mar; 300(3):F734-42. PubMed ID: 21159736
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Salt, Hypertension, and Immunity.
    Rucker AJ; Rudemiller NP; Crowley SD
    Annu Rev Physiol; 2018 Feb; 80():283-307. PubMed ID: 29144825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contribution of Th17 cells to tissue injury in hypertension.
    Basile DP; Abais-Battad JM; Mattson DL
    Curr Opin Nephrol Hypertens; 2021 Mar; 30(2):151-158. PubMed ID: 33394732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immune mechanisms in hypertension.
    De Ciuceis C; Rossini C; La Boria E; Porteri E; Petroboni B; Gavazzi A; Sarkar A; Rosei EA; Rizzoni D
    High Blood Press Cardiovasc Prev; 2014 Dec; 21(4):227-34. PubMed ID: 24446309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pathogenesis of Higher Blood Pressure and Worse Renal Function in Salt-Sensitive Hypertension.
    Chu Y; Zhou Y; Lu S; Lu F; Hu Y
    Kidney Blood Press Res; 2021; 46(2):236-244. PubMed ID: 33794518
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension.
    Ling YH; Krishnan SM; Chan CT; Diep H; Ferens D; Chin-Dusting J; Kemp-Harper BK; Samuel CS; Hewitson TD; Latz E; Mansell A; Sobey CG; Drummond GR
    Pharmacol Res; 2017 Feb; 116():77-86. PubMed ID: 27986554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Different effects of angiotensin receptor blockade on end-organ damage in salt-dependent and salt-independent hypertension.
    Maitland K; Bridges L; Davis WP; Loscalzo J; Pointer MA
    Circulation; 2006 Aug; 114(9):905-11. PubMed ID: 16923758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of the adaptive immune system in hypertension.
    Harrison DG; Vinh A; Lob H; Madhur MS
    Curr Opin Pharmacol; 2010 Apr; 10(2):203-7. PubMed ID: 20167535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CCL2 mediates early renal leukocyte infiltration during salt-sensitive hypertension.
    Alsheikh AJ; Dasinger JH; Abais-Battad JM; Fehrenbach DJ; Yang C; Cowley AW; Mattson DL
    Am J Physiol Renal Physiol; 2020 Apr; 318(4):F982-F993. PubMed ID: 32150444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased Perfusion Pressure Drives Renal T-Cell Infiltration in the Dahl Salt-Sensitive Rat.
    Evans LC; Petrova G; Kurth T; Yang C; Bukowy JD; Mattson DL; Cowley AW
    Hypertension; 2017 Sep; 70(3):543-551. PubMed ID: 28696224
    [TBL] [Abstract][Full Text] [Related]  

  • 55. VEGF-C attenuates renal damage in salt-sensitive hypertension.
    Beaini S; Saliba Y; Hajal J; Smayra V; Bakhos JJ; Joubran N; Chelala D; Fares N
    J Cell Physiol; 2019 Jun; 234(6):9616-9630. PubMed ID: 30378108
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Are the innate and adaptive immune systems setting hypertension on fire?
    Bomfim GF; Rodrigues FL; Carneiro FS
    Pharmacol Res; 2017 Mar; 117():377-393. PubMed ID: 28093357
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Epigenetic modulation of the renal β-adrenergic-WNK4 pathway in salt-sensitive hypertension.
    Mu S; Shimosawa T; Ogura S; Wang H; Uetake Y; Kawakami-Mori F; Marumo T; Yatomi Y; Geller DS; Tanaka H; Fujita T
    Nat Med; 2011 May; 17(5):573-80. PubMed ID: 21499270
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immune suppression prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension.
    Tian N; Gu JW; Jordan S; Rose RA; Hughson MD; Manning RD
    Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H1018-25. PubMed ID: 17040973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The modulatory effect of high salt on immune cells and related diseases.
    Li X; Alu A; Wei Y; Wei X; Luo M
    Cell Prolif; 2022 Sep; 55(9):e13250. PubMed ID: 35747936
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protective effect of dietary potassium against cardiovascular damage in salt-sensitive hypertension: possible role of its antioxidant action.
    Ando K; Matsui H; Fujita M; Fujita T
    Curr Vasc Pharmacol; 2010 Jan; 8(1):59-63. PubMed ID: 19485915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.