BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30805560)

  • 41. Functional analysis of GnRH receptor ligand binding using biotinylated GnRH derivatives.
    Byrne B; Klahn S; Taylor PL; Eidne KA
    Mol Cell Endocrinol; 1998 Sep; 144(1-2):11-9. PubMed ID: 9863623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional loop dynamics of the streptavidin-biotin complex.
    Song J; Li Y; Ji C; Zhang JZ
    Sci Rep; 2015 Jan; 5():7906. PubMed ID: 25601277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theoretical and experimental studies of biotin analogues that bind almost as tightly to streptavidin as biotin.
    Dixon RW; Radmer RJ; Kuhn B; Kollman PA; Yang J; Raposo C; Wilcox CS; Klumb LA; Stayton PS; Behnke C; Le Trong I; Stenkamp R
    J Org Chem; 2002 Mar; 67(6):1827-37. PubMed ID: 11895399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Atomic resolution structure of biotin-free Tyr43Phe streptavidin: what is in the binding site?
    Freitag S; Le Trong I; Klumb LA; Stayton PS; Stenkamp RE
    Acta Crystallogr D Biol Crystallogr; 1999 Jun; 55(Pt 6):1118-26. PubMed ID: 10329773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A chemometric analysis of ligand-induced changes in intrinsic fluorescence of folate binding protein indicates a link between altered conformational structure and physico-chemical characteristics.
    Bruun SW; Holm J; Hansen SI; Andersen CM; Nørgaard L
    Appl Spectrosc; 2009 Dec; 63(12):1315-22. PubMed ID: 20030974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A direct streptavidin-binding assay does not accurately quantitate biotin in human urine.
    Mock DM; Nyalala JO; Raguseo RM
    J Nutr; 2001 Aug; 131(8):2208-14. PubMed ID: 11481419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin-biotin system.
    Chu V; Freitag S; Le Trong I; Stenkamp RE; Stayton PS
    Protein Sci; 1998 Apr; 7(4):848-59. PubMed ID: 9568892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescence modulation sensing of positively and negatively charged proteins on lipid bilayers.
    Robison AD; Huang D; Jung H; Cremer PS
    Biointerphases; 2013 Dec; 8(1):1. PubMed ID: 24706114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A streptavidin mutant with altered ligand-binding specificity.
    Reznik GO; Vajda S; Sano T; Cantor CR
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13525-30. PubMed ID: 9811833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics.
    Srisa-Art M; Dyson EC; deMello AJ; Edel JB
    Anal Chem; 2008 Sep; 80(18):7063-7. PubMed ID: 18712935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intrinsic tryptophan fluorescence of bovine liver adenosine kinase, characterization of ligand binding sites and conformational changes.
    Elalaoui A; Divita G; Maury G; Imbach JL; Goody RS
    Eur J Biochem; 1994 Apr; 221(2):839-46. PubMed ID: 8174564
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on the biotin-binding sites of avidin and streptavidin. A chemically induced dynamic nuclear polarization investigation of the status of tyrosine residues.
    Gitlin G; Khait I; Bayer EA; Wilchek M; Muszkat KA
    Biochem J; 1989 Apr; 259(2):493-8. PubMed ID: 2719662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resolving the fluorescence response of Escherichia coli carbamoyl phosphate synthetase: mapping intra- and intersubunit conformational changes.
    Johnson JL; West JK; Nelson AD; Reinhart GD
    Biochemistry; 2007 Jan; 46(2):387-97. PubMed ID: 17209549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Matrix interference in serum total thyroxin (T4) time-resolved fluorescence immunoassay (TRFIA) and its elimination with the use of streptavidin-biotin separation technique.
    Wu FB; He YF; Han SQ
    Clin Chim Acta; 2001 Jun; 308(1-2):117-26. PubMed ID: 11412823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ligand binding energy and catalytic efficiency from improved packing within receptors and enzymes.
    Williams DH; Stephens E; Zhou M
    J Mol Biol; 2003 May; 329(2):389-99. PubMed ID: 12758085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of streptavidin affinity mutants on the integrin-independent adhesion of biotinylated endothelial cells.
    Chan BP; Chilkoti A; Reichert WM; Truskey GA
    Biomaterials; 2003 Feb; 24(4):559-70. PubMed ID: 12437950
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accurate titration of avidin and streptavidin with biotin-fluorophore conjugates in complex, colored biofluids.
    Gruber HJ; Kada G; Marek M; Kaiser K
    Biochim Biophys Acta; 1998 Jul; 1381(2):203-12. PubMed ID: 9685643
    [TBL] [Abstract][Full Text] [Related]  

  • 58. What determines the strength of noncovalent association of ligands to proteins in aqueous solution?
    Miyamoto S; Kollman PA
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8402-6. PubMed ID: 8378312
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multicolored nanometre-resolution mapping of single protein-ligand binding complexes using far-field photostable optical nanoscopy (PHOTON).
    Huang T; Nancy Xu XH
    Nanoscale; 2011 Sep; 3(9):3567-72. PubMed ID: 21633732
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional structures of avidin and the avidin-biotin complex.
    Livnah O; Bayer EA; Wilchek M; Sussman JL
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5076-80. PubMed ID: 8506353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.