BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30805573)

  • 1. Atmospheric OH oxidation chemistry of trifluralin and acetochlor.
    Murschell T; Farmer DK
    Environ Sci Process Impacts; 2019 Apr; 21(4):650-658. PubMed ID: 30805573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Products and mechanisms of the heterogeneous reaction of three suspended herbicide particles with NO₃ radicals.
    Sun W; Zhang P; Yang B; Shu J; Wang Y; Li Y
    Sci Total Environ; 2015 May; 514():185-91. PubMed ID: 25659317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of acetochlor, atrazine, 2,4-D, chlorotoluron, MCPA, and trifluralin in six soils from Slovakia.
    Hiller E; Krascsenits Z; Cernanský S
    Bull Environ Contam Toxicol; 2008 May; 80(5):412-6. PubMed ID: 18401535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.
    Tkacik DS; Lambe AT; Jathar S; Li X; Presto AA; Zhao Y; Blake D; Meinardi S; Jayne JT; Croteau PL; Robinson AL
    Environ Sci Technol; 2014 Oct; 48(19):11235-42. PubMed ID: 25188317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trifluralin: photolysis under sunlight conditions and reaction with HO* radicals.
    Le Person A; Mellouki A; Muñoz A; Borras E; Martin-Reviejo M; Wirtz K
    Chemosphere; 2007 Feb; 67(2):376-83. PubMed ID: 17166544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation.
    Kavouras IG; Stephanou EG
    Environ Sci Technol; 2002 Dec; 36(23):5083-91. PubMed ID: 12523424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric OH Oxidation of Three Chlorinated Aromatic Herbicides.
    Murschell T; Farmer DK
    Environ Sci Technol; 2018 Apr; 52(8):4583-4591. PubMed ID: 29601726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-phase degradation of the herbicide ethalfluralin under atmospheric conditions.
    Muñoz A; Vera T; Ródenas M; Borrás E; Mellouki A; Treacy J; Sidebottom H
    Chemosphere; 2014 Jan; 95():395-401. PubMed ID: 24139158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ozonation of trifluralin particles: an experimental investigation with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer.
    Meng J; Yang B; Zhang Y; Shu X; Shu J
    J Hazard Mater; 2009 Dec; 172(1):390-4. PubMed ID: 19643540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric concentrations and dry and wet deposits of some herbicides currently used on the Canadian Prairies.
    Waite DT; Bailey P; Sproull JF; Quiring DV; Chau DF; Bailey J; Cessna AJ
    Chemosphere; 2005 Feb; 58(6):693-703. PubMed ID: 15621183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and mechanisms of radiation-induced degradation of acetochlor.
    Liu SY; Chen YP; Yu HQ; Zhang SJ
    Chemosphere; 2005 Mar; 59(1):13-9. PubMed ID: 15698639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mimicking the atmospheric OH-radical-mediated photooxidation of isoprene: formation of cloud-condensation nuclei polyols monitored by electrospray ionization mass spectrometry.
    Santos LS; Dalmázio I; Eberlin MN; Claeys M; Augusti R
    Rapid Commun Mass Spectrom; 2006; 20(14):2104-8. PubMed ID: 16767687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate mass analysis of ethanesulfonic acid degradates of acetochlor and alachlor using high-performance liquid chromatography and time-of-flight mass spectrometry.
    Thurman EM; Ferrer I; Parry R
    J Chromatogr A; 2002 May; 957(1):3-9. PubMed ID: 12102310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase.
    Hung HM; Hoffmann MR
    Environ Sci Technol; 2015 Dec; 49(23):13768-76. PubMed ID: 26270804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetochlor sorption and degradation in limestone subsurface and aquifers.
    Janniche GS; Mouvet C; Albrechtsen HJ
    Pest Manag Sci; 2010 Dec; 66(12):1287-97. PubMed ID: 20721954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the dissociation pathways of metolachlor, acetochlor and alachlor under electron ionization - application to the identification of ozonation products.
    Bouchonnet S; Kinani S; Souissi Y; Bourcier S; Sablier M; Roche P; Boireau V; Ingrand V
    Rapid Commun Mass Spectrom; 2011 Jan; 25(1):93-103. PubMed ID: 21154657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments.
    Gong W; Liu X; Xia S; Liang B; Zhang W
    J Hazard Mater; 2016 Jun; 310():125-34. PubMed ID: 26905610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils.
    Cooke CM; Shaw G; Collins CD
    Environ Pollut; 2004 Dec; 132(3):541-52. PubMed ID: 15325470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.
    Parshintsev J; Vaikkinen A; Lipponen K; Vrkoslav V; Cvačka J; Kostiainen R; Kotiaho T; Hartonen K; Riekkola ML; Kauppila TJ
    Rapid Commun Mass Spectrom; 2015 Jul; 29(13):1233-41. PubMed ID: 26395607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abiotic reduction of pendimethalin and trifluralin in controlled and natural systems containing Fe(II) and dissolved organic matter.
    Hakala JA; Chin YP
    J Agric Food Chem; 2010 Dec; 58(24):12840-6. PubMed ID: 21087048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.