BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30805584)

  • 41. Expression of nuclear and cytoplasmic phosphorylated FADD in gastric cancers.
    Yoo NJ; Lee SH; Jeong EG; Lee JW; Soung YH; Nam SW; Kim SH; Lee JY; Lee SH
    Pathol Res Pract; 2007; 203(2):73-8. PubMed ID: 17207586
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The NEDD8-activating enzyme inhibitor MLN4924 induces G2 arrest and apoptosis in T-cell acute lymphoblastic leukemia.
    Han K; Wang Q; Cao H; Qiu G; Cao J; Li X; Wang J; Shen B; Zhang J
    Oncotarget; 2016 Apr; 7(17):23812-24. PubMed ID: 26993774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acquisition of Fas resistance by Fas receptor mutation in a childhood B-precursor acute lymphoblastic leukemia cell line, MML-1.
    Inaba H; Shimada K; Zhou YW; Ido M; Buck S; Yonehara S; Kaplan J; Komada Y
    Int J Oncol; 2005 Aug; 27(2):573-9. PubMed ID: 16010441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia.
    Palmi C; Savino AM; Silvestri D; Bronzini I; Cario G; Paganin M; Buldini B; Galbiati M; Muckenthaler MU; Bugarin C; Della Mina P; Nagel S; Barisone E; Casale F; Locatelli F; Lo Nigro L; Micalizzi C; Parasole R; Pession A; Putti MC; Santoro N; Testi AM; Ziino O; Kulozik AE; Zimmermann M; Schrappe M; Villa A; Gaipa G; Basso G; Biondi A; Valsecchi MG; Stanulla M; Conter V; Te Kronnie G; Cazzaniga G
    Oncotarget; 2016 Sep; 7(37):59260-59272. PubMed ID: 27449287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overexpression of Lhx2 suppresses proliferation of human T cell acute lymphoblastic leukemia-derived cells, partly by reducing LMO2 protein levels.
    Miyashita K; Kitajima K; Goyama S; Kitamura T; Hara T
    Biochem Biophys Res Commun; 2018 Jan; 495(3):2310-2316. PubMed ID: 29278703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High PIM1 expression is a biomarker of T-cell acute lymphoblastic leukemia with JAK/STAT activation or t(6;7)(p21;q34)/TRB@-PIM1 rearrangement.
    La Starza R; Messina M; Gianfelici V; Pierini V; Matteucci C; Pierini T; Limongi MZ; Vitale A; Roti G; Chiaretti S; Foà R; Mecucci C
    Leukemia; 2018 Aug; 32(8):1807-1810. PubMed ID: 29479063
    [No Abstract]   [Full Text] [Related]  

  • 47. Phosphorylation status of Fas-associated death domain-containing protein (FADD) is associated with prostate cancer progression.
    Shimada K; Matsuyoshi S; Nakamura M; Ishida E; Konishi N
    J Pathol; 2005 Aug; 206(4):423-32. PubMed ID: 15906275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Orbital mass secondary to precursor T-cell acute lymphoblastic leukemia: a rare presentation.
    Esmaeli B; Medeiros LJ; Myers J; Champlin R; Singh S; Ginsberg L
    Arch Ophthalmol; 2001 Mar; 119(3):443-6. PubMed ID: 11231781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CD40L and IL-4 stimulation of acute lymphoblastic leukemia cells results in upregulation of mRNA level of FLICE--an important component of apoptosis.
    łuczyński W; Kowalczuk O; Iłendo E; Stasiak-Barmuta A; Krawczuk-Rybak M; Malinowska I; Kołtan A; Szczepalński T; Olejnik I; Jaworowski R; Chyczewski L; Matysiak M; Wysocki M; Sońta-Jakimczyk D; Wieczorek M
    Folia Histochem Cytobiol; 2007; 45(1):15-20. PubMed ID: 17378240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression and significance of CD47, PD1 and PDL1 in T-cell acute lymphoblastic lymphoma/leukemia.
    Yang K; Xu J; Liu Q; Li J; Xi Y
    Pathol Res Pract; 2019 Feb; 215(2):265-271. PubMed ID: 30466764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase.
    Scaffidi C; Volkland J; Blomberg I; Hoffmann I; Krammer PH; Peter ME
    J Immunol; 2000 Feb; 164(3):1236-42. PubMed ID: 10640736
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Clinical characterization and prognosis of T cell acute lymphoblastic leukemia with high CRLF2 gene expression in children.
    Wang M; Wen J; Guo Y; Shen Y; An X; Hu Y; Xiao J
    PLoS One; 2019; 14(12):e0224652. PubMed ID: 31830053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia.
    Balbach ST; Makarova O; Bonn BR; Zimmermann M; Rohde M; Oschlies I; Klapper W; Rössig C; Burkhardt B
    Leukemia; 2016 Apr; 30(4):970-3. PubMed ID: 26216196
    [No Abstract]   [Full Text] [Related]  

  • 54. Nuclear PFKP promotes CXCR4-dependent infiltration by T cell acute lymphoblastic leukemia.
    Gao X; Qin S; Wu Y; Chu C; Jiang B; Johnson RH; Kuang D; Zhang J; Wang X; Mehta A; Tew KD; Leone GW; Yu XZ; Wang H
    J Clin Invest; 2021 Aug; 131(16):. PubMed ID: 34255748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rs217727 polymorphism in H19 promotes cell apoptosis by regulating the expressions of H19 and the activation of its downstream signaling pathway.
    Ge L; Wang Q; Hu S; Yang X
    J Cell Physiol; 2019 May; 234(5):7279-7291. PubMed ID: 30362559
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Knockdown of MAML1 inhibits proliferation and induces apoptosis of T-cell acute lymphoblastic leukemia cells through SP1-dependent inactivation of TRIM59.
    Cheng H; Chen L; Hu X; Qiu H; Xu X; Gao L; Tang G; Zhang W; Wang J; Yang J; Huang C
    J Cell Physiol; 2019 Apr; 234(4):5186-5195. PubMed ID: 30370525
    [TBL] [Abstract][Full Text] [Related]  

  • 57. FAS death domain deletions and cellular FADD-like interleukin 1beta converting enzyme inhibitory protein (long) overexpression: alternative mechanisms for deregulating the extrinsic apoptotic pathway in diffuse large B-cell lymphoma subtypes.
    Takahashi H; Feuerhake F; Kutok JL; Monti S; Dal Cin P; Neuberg D; Aster JC; Shipp MA
    Clin Cancer Res; 2006 Jun; 12(11 Pt 1):3265-71. PubMed ID: 16740746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia.
    Mirandola L; Chiriva-Internati M; Montagna D; Locatelli F; Zecca M; Ranzani M; Basile A; Locati M; Cobos E; Kast WM; Asselta R; Paraboschi EM; Comi P; Chiaramonte R
    J Pathol; 2012 Apr; 226(5):713-22. PubMed ID: 21984373
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CD123 expression patterns and selective targeting with a CD123-targeted antibody-drug conjugate (IMGN632) in acute lymphoblastic leukemia.
    Angelova E; Audette C; Kovtun Y; Daver N; Wang SA; Pierce S; Konoplev SN; Khogeer H; Jorgensen JL; Konopleva M; Zweidler-McKay PA; Medeiros LJ; Kantarjian HM; Jabbour EJ; Khoury JD
    Haematologica; 2019 Apr; 104(4):749-755. PubMed ID: 30361418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of novel molecular prognostic markers for paediatric T-cell acute lymphoblastic leukaemia.
    Gottardo NG; Hoffmann K; Beesley AH; Freitas JR; Firth MJ; Perera KU; de Klerk NH; Baker DL; Kees UR
    Br J Haematol; 2007 May; 137(4):319-28. PubMed ID: 17456054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.