These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30805704)

  • 1. Humans derive task expectancies from sub-second and supra-second interval durations.
    Aufschnaiter S; Kiesel A; Thomaschke R
    Psychol Res; 2020 Jul; 84(5):1333-1345. PubMed ID: 30805704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals.
    Ohmae S; Kunimatsu J; Tanaka M
    J Neurosci; 2017 Mar; 37(13):3511-3522. PubMed ID: 28242799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-based task expectancy: perceptual task indicator expectancy or expectancy of post-perceptual task components?
    Monno I; Aufschnaiter S; Ehret S; Kiesel A; Poljac E; Thomaschke R
    Psychol Res; 2022 Jul; 86(5):1665-1682. PubMed ID: 34783896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer of time-based task expectancy across different timing environments.
    Aufschnaiter S; Kiesel A; Thomaschke R
    Psychol Res; 2018 Jan; 82(1):230-243. PubMed ID: 28741028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticipation of future events improves the ability to estimate elapsed time.
    Tsunoda Y; Kakei S
    Exp Brain Res; 2011 Oct; 214(3):323-34. PubMed ID: 21901454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-Based Transition Expectancy in Task Switching: Do We Need to Know the Task to Switch to?
    Aufschnaiter S; Kiesel A; Thomaschke R
    J Cogn; 2021 Mar; 4(1):19. PubMed ID: 33748664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual differences in first- and second-order temporal judgment.
    Corcoran AW; Groot C; Bruno A; Johnston A; Cropper SJ
    PLoS One; 2018; 13(2):e0191422. PubMed ID: 29401520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timescale- and Sensory Modality-Dependency of the Central Tendency of Time Perception.
    Murai Y; Yotsumoto Y
    PLoS One; 2016; 11(7):e0158921. PubMed ID: 27404269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of shared resources in time judgment and sequence reasoning tasks.
    Brown SW
    Acta Psychol (Amst); 2014 Mar; 147():92-6. PubMed ID: 23680412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Parkinson's disease on time estimation as a function of stimulus duration range and modality.
    Smith JG; Harper DN; Gittings D; Abernethy D
    Brain Cogn; 2007 Jul; 64(2):130-43. PubMed ID: 17343966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A divergence of sub- and supra-second timing abilities in childhood and its relation to academic achievement.
    Hamamouche K; Cordes S
    J Exp Child Psychol; 2019 Feb; 178():137-154. PubMed ID: 30380454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Possible Link between Supra-Second Open-Ended Timing Sensitivity and Obsessive-Compulsive Tendencies.
    Gilaie-Dotan S; Ashkenazi H; Dar R
    Front Behav Neurosci; 2016; 10():127. PubMed ID: 27445725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No evidence for qualitative differences in the processing of short and long temporal intervals.
    Rammsayer T; Ulrich R
    Acta Psychol (Amst); 2005 Oct; 120(2):141-71. PubMed ID: 15907778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implicit variations of temporal predictability: Shaping the neural oscillatory and behavioural response.
    Herbst SK; Obleser J
    Neuropsychologia; 2017 Jul; 101():141-152. PubMed ID: 28527912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the internal structure of psychophysical timing performance in the sub-second and second range by utilizing confirmatory factor analysis.
    Rammsayer TH; Troche SJ
    Adv Exp Med Biol; 2014; 829():33-47. PubMed ID: 25358704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-Dependent Neural Modulations in the Perception of Duration.
    Murai Y; Yotsumoto Y
    Front Integr Neurosci; 2016; 10():12. PubMed ID: 27013993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting temporal predictability: Event-related potential correlates of task-supportive temporal cue processing in auditory distraction.
    Volosin M; Grimm S; Horváth J
    Brain Res; 2016 May; 1639():120-31. PubMed ID: 26947619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired reproduction of second but not millisecond time intervals in Parkinson's disease.
    Koch G; Costa A; Brusa L; Peppe A; Gatto I; Torriero S; Gerfo EL; Salerno S; Oliveri M; Carlesimo GA; Caltagirone C
    Neuropsychologia; 2008 Apr; 46(5):1305-13. PubMed ID: 18215403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroelectromagnetic signatures of the reproduction of supra-second durations.
    Kononowicz TW; Sander T; van Rijn H
    Neuropsychologia; 2015 Aug; 75():201-13. PubMed ID: 26057434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chronic video game use on time perception: differences between sub- and multi-second intervals.
    Rivero TS; Covre P; Reyes MB; Bueno OF
    Cyberpsychol Behav Soc Netw; 2013 Feb; 16(2):140-4. PubMed ID: 23249242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.