These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30806121)

  • 41. Better Understanding of Direct Bone-Conduction Measurement: Comparison with Frequency-Specific Bone-Conduction Tones and Brainstem Responses.
    Kim Y; Han W; Park S; You S; Kwak C; Seo Y; Lee J
    J Audiol Otol; 2020 Apr; 24(2):85-90. PubMed ID: 31747742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Round window otosclerosis: radiologic classification and clinical correlations.
    Mansour S; Nicolas K; Ahmad HH
    Otol Neurotol; 2011 Apr; 32(3):384-92. PubMed ID: 21221043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Abnormal CT findings are risk factors for otitis media-related sensorineural hearing loss.
    Yang CJ; Kim TS; Shim BS; Ahn JH; Chung JW; Yoon TH; Park HJ
    Ear Hear; 2014; 35(3):375-8. PubMed ID: 24499975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.
    Bergin MJ; Bird PA; Vlajkovic SM; Thorne PR
    Hear Res; 2015 Dec; 330(Pt A):147-54. PubMed ID: 26493491
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The pure-tone hearing thresholds of otologically healthy 14-year-old children.
    Rahko-Laitila P; Karma P; Laippala P; Salmelin R; Sipilä M; Manninen M; Rahko T
    Audiology; 2001; 40(4):171-7. PubMed ID: 11521708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surgical anatomy of round window and its implications for cochlear implantation.
    Singla A; Sahni D; Gupta AK; Loukas M; Aggarwal A
    Clin Anat; 2014 Apr; 27(3):331-6. PubMed ID: 24357095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Round and Oval Window Anatomic Variability: Its Implication for the Vibroplasty Technique.
    Mancheño M; Aristegui M; Sañudo JR
    Otol Neurotol; 2017 Jun; 38(5):e50-e57. PubMed ID: 28346291
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Air and Bone Conduction Click and Tone-Burst Auditory Brainstem Thresholds Using Kalman Adaptive Processing in Nonsedated Normal-Hearing Infants.
    Elsayed AM; Hunter LL; Keefe DH; Feeney MP; Brown DK; Meinzen-Derr JK; Baroch K; Sullivan-Mahoney M; Francis K; Schaid LG
    Ear Hear; 2015; 36(4):471-81. PubMed ID: 25738572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vibration direction sensitivity of the cochlea with bone conduction stimulation in guinea pigs.
    Zhao M; Fridberger A; Stenfelt S
    Sci Rep; 2021 Feb; 11(1):2855. PubMed ID: 33536482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vestibulotomy with ossiculoplasty versus round window vibroplasty procedure in children with oval window aplasia.
    Colletti L; Mandalà M; Colletti G; Colletti V
    Otol Neurotol; 2014 Jun; 35(5):831-7. PubMed ID: 24751744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Round window membrane implantation with an active middle ear implant: a study of the effects on the performance of round window exposure and transducer tip diameter in human cadaveric temporal bones.
    Tringali S; Koka K; Deveze A; Holland NJ; Jenkins HA; Tollin DJ
    Audiol Neurootol; 2010; 15(5):291-302. PubMed ID: 20150727
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Feasibility of direct promontory stimulation by bone conduction: A preliminary study of frequency-response characteristics in cats.
    Shi YX; Ren LJ; Yang L; Zhang TY; Xie YZ; Dai PD
    Hear Res; 2019 Jul; 378():101-107. PubMed ID: 30773325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds.
    Gorga MP; Johnson TA; Kaminski JR; Beauchaine KL; Garner CA; Neely ST
    Ear Hear; 2006 Feb; 27(1):60-74. PubMed ID: 16446565
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Infrasound transmission in the human ear: Implications for acoustic and vestibular responses of the normal and dehiscent inner ear.
    Raufer S; Masud SF; Nakajima HH
    J Acoust Soc Am; 2018 Jul; 144(1):332. PubMed ID: 30075646
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alteration of the relative vibration of the round window membrane after implantation of a direct acoustic cochlear implant.
    D'hondt C; Wouters J; Verhaert N
    Int J Audiol; 2020 May; 59(5):341-347. PubMed ID: 31860369
    [No Abstract]   [Full Text] [Related]  

  • 57. Mechanics of type IV tympanoplasty: experimental findings and surgical implications.
    Merchant SN; Ravicz ME; Rosowski JJ
    Ann Otol Rhinol Laryngol; 1997 Jan; 106(1):49-60. PubMed ID: 9006362
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Vibrant soundbridge implantation of congenital atresia of oval window(with summary of nine cases].
    Wang DN; Zhao SQ; Li Y; Ma XB; Ren R; Chen XQ; Li YL
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Apr; 31(8):588-589. PubMed ID: 29871320
    [No Abstract]   [Full Text] [Related]  

  • 59. [Changes in the auditory threshold for air and bone conduction in relation to middle ear pressure in probands with normal hearing].
    Maier W; Ross UH
    Laryngorhinootologie; 1995 Sep; 74(9):525-30. PubMed ID: 7495432
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Several mechanical manipulations of the wall of the inner ear do not affect air and bone conduction auditory thresholds.
    Perez R; Adelman C; Sohmer H
    Ann Otol Rhinol Laryngol; 2011 Jan; 120(1):66-70. PubMed ID: 21370683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.