BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30806164)

  • 1. Evaluation of physiological workload assessment methods using heart rate and accelerometry for a smart wearable system.
    Yang L; Lu K; Forsman M; Lindecrantz K; Seoane F; Ekblom Ö; Eklund J
    Ergonomics; 2019 May; 62(5):694-705. PubMed ID: 30806164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of nine heart rate-based models to predict work metabolism of Forest workers.
    Arab S; Imbeau D; Dubeau D; Dubé PA; Auger I
    Ergonomics; 2020 Nov; 63(11):1394-1413. PubMed ID: 32659200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Worker heat stress prevention and work metabolism estimation: comparing two assessment methods of the heart rate thermal component.
    Dubé PA; Imbeau D; Dubeau D; Auger I
    Ergonomics; 2019 Aug; 62(8):1066-1085. PubMed ID: 30961471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities.
    Sirichana W; Dolezal BA; Neufeld EV; Wang X; Cooper CB
    J Sci Med Sport; 2017 Aug; 20(8):761-765. PubMed ID: 28159535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting ambulatory energy expenditure in lower limb amputees using multi-sensor methods.
    Ladlow P; Nightingale TE; McGuigan MP; Bennett AN; Phillip RD; Bilzon JLJ
    PLoS One; 2019; 14(1):e0209249. PubMed ID: 30703115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using GPS, accelerometry and heart rate to predict outdoor graded walking energy expenditure.
    de Müllenheim PY; Chaudru S; Emily M; Gernigon M; Mahé G; Bickert S; Prioux J; Noury-Desvaux B; Le Faucheur A
    J Sci Med Sport; 2018 Feb; 21(2):166-172. PubMed ID: 29110991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of the Multisensory Wristwatch Polar Vantage's Estimation of Energy Expenditure in Various Activities: Instrument Validation Study.
    Gilgen-Ammann R; Schweizer T; Wyss T
    JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14534. PubMed ID: 31579020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Polar OH1 optical heart rate sensor for moderate and high intensity physical activities.
    Hettiarachchi IT; Hanoun S; Nahavandi D; Nahavandi S
    PLoS One; 2019; 14(5):e0217288. PubMed ID: 31120968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of work metabolism from heart rate measurements in forest work: some practical methodological issues.
    Dubé PA; Imbeau D; Dubeau D; Auger I; Leone M
    Ergonomics; 2015; 58(12):2040-56. PubMed ID: 26046487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions.
    Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M
    Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating oxygen consumption from heart rate using adaptive neuro-fuzzy inference system and analytical approaches.
    Kolus A; Dubé PA; Imbeau D; Labib R; Dubeau D
    Appl Ergon; 2014 Nov; 45(6):1475-83. PubMed ID: 24793823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instantaneous VO2 from a wearable device.
    Cook AJ; Ng B; Gargiulo GD; Hindmarsh D; Pitney M; Lehmann T; Hamilton TJ
    Med Eng Phys; 2018 Feb; 52():41-48. PubMed ID: 29373233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men.
    Villars C; Bergouignan A; Dugas J; Antoun E; Schoeller DA; Roth H; Maingon AC; Lefai E; Blanc S; Simon C
    J Appl Physiol (1985); 2012 Dec; 113(11):1763-71. PubMed ID: 23019315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of Wrist-Worn photoplethysmography devices to measure heart rate: A systematic review and meta-analysis.
    Zhang Y; Weaver RG; Armstrong B; Burkart S; Zhang S; Beets MW
    J Sports Sci; 2020 Sep; 38(17):2021-2034. PubMed ID: 32552580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of Heart Rate, Respiration and Motion Measurements from a Wearable Sensor System to Enhance Energy Expenditure Estimation.
    Lu K; Yang L; Seoane F; Abtahi F; Forsman M; Lindecrantz K
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30223429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical Workload Tracking Using Human Activity Recognition with Wearable Devices.
    Manjarres J; Narvaez P; Gasser K; Percybrooks W; Pardo M
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.
    Strath SJ; Bassett DR; Swartz AM; Thompson DL
    Med Sci Sports Exerc; 2001 Dec; 33(12):2118-23. PubMed ID: 11740308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors.
    Altini M; Penders J; Amft O
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):469-75. PubMed ID: 25594986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of handling breaks on estimation of heart rate responses to bouts of physical activity among young women: An accelerometer research issue.
    Ayabe M; Kumahara H
    Gait Posture; 2020 Sep; 81():1-6. PubMed ID: 32645577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.