These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30806164)

  • 21. Defining a systems framework for characterizing physical work demands with wearable sensors.
    Stirling L; Acosta-Sojo Y; Dennerlein JT
    Ann Work Expo Health; 2024 Jun; 68(5):443-465. PubMed ID: 38597679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validity of the simultaneous heart rate-motion sensor technique for measuring energy expenditure.
    Strath SJ; Bassett DR; Thompson DL; Swartz AM
    Med Sci Sports Exerc; 2002 May; 34(5):888-94. PubMed ID: 11984311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerometry combined with heart rate telemetry in the assessment of total energy expenditure.
    Patrik Johansson H; Rossander-Hulthén L; Slinde F; Ekblom B
    Br J Nutr; 2006 Mar; 95(3):631-9. PubMed ID: 16512950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiorespiratory fitness estimation using wearable sensors: Laboratory and free-living analysis of context-specific submaximal heart rates.
    Altini M; Casale P; Penders J; Ten Velde G; Plasqui G; Amft O
    J Appl Physiol (1985); 2016 May; 120(9):1082-96. PubMed ID: 26940653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.
    Beltrame T; Amelard R; Wong A; Hughson RL
    J Appl Physiol (1985); 2018 Feb; 124(2):473-481. PubMed ID: 28596271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.
    Dubé PA; Imbeau D; Dubeau D; Lebel L; Kolus A
    Appl Ergon; 2016 May; 54():148-57. PubMed ID: 26851474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of physiological and accelerometer data to improve physical activity assessment.
    Strath SJ; Brage S; Ekelund U
    Med Sci Sports Exerc; 2005 Nov; 37(11 Suppl):S563-71. PubMed ID: 16294119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wearable Motion-Based Heart Rate at Rest: A Workplace Evaluation.
    Hernandez J; McDuff D; Quigley K; Maes P; Picard RW
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1920-1927. PubMed ID: 30387751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measured by the oxygen uptake in the field, the work of refuse collectors is particularly hard work: Are the limit values for physical endurance workload too low?
    Preisser AM; Zhou L; Velasco Garrido M; Harth V
    Int Arch Occup Environ Health; 2016 Feb; 89(2):211-20. PubMed ID: 26088744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive neuro-fuzzy inference systems with k-fold cross-validation for energy expenditure predictions based on heart rate.
    Kolus A; Imbeau D; Dubé PA; Dubeau D
    Appl Ergon; 2015 Sep; 50():68-78. PubMed ID: 25959320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating Heart Rate, Energy Expenditure, and Physical Performance With a Wrist Photoplethysmographic Device During Running.
    Parak J; Uuskoski M; Machek J; Korhonen I
    JMIR Mhealth Uhealth; 2017 Jul; 5(7):e97. PubMed ID: 28743682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating relative physical workload using heart rate monitoring: a validation by whole-body indirect calorimetry.
    Garet M; Boudet G; Montaurier C; Vermorel M; Coudert J; Chamoux A
    Eur J Appl Physiol; 2005 May; 94(1-2):46-53. PubMed ID: 15609030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EMG, heart rate, and accelerometer as estimators of energy expenditure in locomotion.
    Tikkanen O; Kärkkäinen S; Haakana P; Kallinen M; Pullinen T; Finni T
    Med Sci Sports Exerc; 2014 Sep; 46(9):1831-9. PubMed ID: 24504428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying Free-Living Physical Activities Using Lab-Based Models with Wearable Accelerometers.
    Dutta A; Ma O; Toledo M; Pregonero AF; Ainsworth BE; Buman MP; Bliss DW
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30424512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.
    Learmonth YC; Kinnett-Hopkins D; Rice IM; Dysterheft JL; Motl RW
    Spinal Cord; 2016 Feb; 54(2):110-4. PubMed ID: 25777327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of heart rate to predict energy expenditure from low to high activity levels.
    Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT
    Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tonic-clonic seizure detection using accelerometry-based wearable sensors: A prospective, video-EEG controlled study.
    Johansson D; Ohlsson F; Krýsl D; Rydenhag B; Czarnecki M; Gustafsson N; Wipenmyr J; McKelvey T; Malmgren K
    Seizure; 2019 Feb; 65():48-54. PubMed ID: 30611010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wrist Accelerometry for Physical Activity Measurement in Individuals With Spinal Cord Injury-A Need for Individually Calibrated Cut-Points.
    McCracken LA; Ma JK; Voss C; Chan FH; Martin Ginis KA; West CR
    Arch Phys Med Rehabil; 2018 Apr; 99(4):684-689. PubMed ID: 29222006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A
    BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.
    Montoye AHK; Begum M; Henning Z; Pfeiffer KA
    Physiol Meas; 2017 Feb; 38(2):343-357. PubMed ID: 28107205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.