These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30806164)

  • 41. Evaluation of heart rate as a method for assessing moderate intensity physical activity.
    Strath SJ; Swartz AM; Bassett DR; O'Brien WL; King GA; Ainsworth BE
    Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S465-70. PubMed ID: 10993416
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of Accelerometer Placement and/or Heart Rate on Energy Expenditure Prediction during Uphill Exercise.
    Kuo TBJ; Li JY; Chen CY; Lin YC; Tsai MW; Lin SP; Yang CCH
    J Mot Behav; 2018; 50(2):127-133. PubMed ID: 28850303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison between Chest-Worn Accelerometer and Gyroscope Performance for Heart Rate and Respiratory Rate Monitoring.
    Romano C; Schena E; Formica D; Massaroni C
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290971
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ability of Wearable Accelerometers-Based Measures to Assess the Stability of Working Postures.
    Guo L; Kou J; Wu M
    Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measuring Physical Activity in Spinal Cord Injury Using Wrist-Worn Accelerometers.
    Murphy SL; Kratz AL; Zynda AJ
    Am J Occup Ther; 2019; 73(1):7301205090p1-7301205090p10. PubMed ID: 30839264
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimating metabolic equivalents for activities in daily life using acceleration and heart rate in wearable devices.
    Nakanishi M; Izumi S; Nagayoshi S; Kawaguchi H; Yoshimoto M; Shiga T; Ando T; Nakae S; Usui C; Aoyama T; Tanaka S
    Biomed Eng Online; 2018 Jul; 17(1):100. PubMed ID: 30055617
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring Using Wearable Sensors.
    Nathan V; Jafari R
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1834-1846. PubMed ID: 29990023
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxygen consumption during fire suppression: error of heart rate estimation.
    Sothmann M; Saupe K; Raven P; Pawelczyk J; Davis P; Dotson C; Landy F; Siliunas M
    Ergonomics; 1991 Dec; 34(12):1469-74. PubMed ID: 1800111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Validity of heart-rate based measurements of oxygen consumption during work with light and moderate physical activity.
    Bernmark E; Forsman M; Pernold G; Wiktorin C
    Work; 2012; 41 Suppl 1():5475-6. PubMed ID: 22317589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity.
    Brage S; Ekelund U; Brage N; Hennings MA; Froberg K; Franks PW; Wareham NJ
    J Appl Physiol (1985); 2007 Aug; 103(2):682-92. PubMed ID: 17463305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor.
    Zihajehzadeh S; Park EJ
    PLoS One; 2016; 11(10):e0165211. PubMed ID: 27764231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of PAEE from combined and separate heart rate and movement models in children.
    Corder K; Brage S; Wareham NJ; Ekelund U
    Med Sci Sports Exerc; 2005 Oct; 37(10):1761-7. PubMed ID: 16260978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measurement latency significantly contributes to reduced heart rate measurement accuracy in wearable devices.
    Støve MP; Holm RS; Kjaersgaard AS; Duncker K; Jensen MR; Larsen BT
    J Med Eng Technol; 2020 Apr; 44(3):125-132. PubMed ID: 32404012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Pilot Study Validating Select Research-Grade and Consumer-Based Wearables Throughout a Range of Dynamic Exercise Intensities in Persons With and Without Type 1 Diabetes: A Novel Approach.
    Yavelberg L; Zaharieva D; Cinar A; Riddell MC; Jamnik V
    J Diabetes Sci Technol; 2018 May; 12(3):569-576. PubMed ID: 29320885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Significance of chronotropic exertion effects on the heart in diagnosing physical fitness in children practising swimming].
    Walat S
    Ann Acad Med Stetin; 1995; 41():109-29. PubMed ID: 8615538
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry.
    Garnotel M; Bastian T; Romero-Ugalde HM; Maire A; Dugas J; Zahariev A; Doron M; Jallon P; Charpentier G; Franc S; Blanc S; Bonnet S; Simon C
    J Appl Physiol (1985); 2018 Mar; 124(3):780-790. PubMed ID: 29191980
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using wearable physiological sensors to predict energy expenditure.
    Ingraham KA; Ferris DP; David Remy C
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():340-345. PubMed ID: 28813842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic cost of stride rate, resistance, and combined use of arms and legs on the elliptical trainer.
    Mier CM; Feito Y
    Res Q Exerc Sport; 2006 Dec; 77(4):507-13. PubMed ID: 17243225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Can energy expenditure be accurately assessed using accelerometry-based wearable motion detectors for physical activity monitoring in post-stroke patients in the subacute phase?
    Mandigout S; Lacroix J; Ferry B; Vuillerme N; Compagnat M; Daviet JC
    Eur J Prev Cardiol; 2017 Dec; 24(18):2009-2016. PubMed ID: 29067851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.