BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 30806238)

  • 1. Hexavalent chromium induces malignant transformation of human lung bronchial epithelial cells via ROS-dependent activation of miR-21-PDCD4 signaling.
    Pratheeshkumar P; Son YO; Divya SP; Turcios L; Roy RV; Hitron JA; Wang L; Kim D; Dai J; Asha P; Zhang Z; Shi X
    Oncotarget; 2016 Aug; 7(32):51193-51210. PubMed ID: 27323401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic Hexavalent Chromium Exposure Induces Cancer Stem Cell-Like Property and Tumorigenesis by Increasing c-Myc Expression.
    Wang Z; Lin HP; Li Y; Tao H; Yang P; Xie J; Maddy D; Kondo K; Yang C
    Toxicol Sci; 2019 Dec; 172(2):252-264. PubMed ID: 31504995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upregulation of histone-lysine methyltransferases plays a causal role in hexavalent chromium-induced cancer stem cell-like property and cell transformation.
    Wang Z; Wu J; Humphries B; Kondo K; Jiang Y; Shi X; Yang C
    Toxicol Appl Pharmacol; 2018 Mar; 342():22-30. PubMed ID: 29391238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of gene expression profiles in chromate transformed BEAS-2B cells.
    Sun H; Clancy HA; Kluz T; Zavadil J; Costa M
    PLoS One; 2011 Mar; 6(3):e17982. PubMed ID: 21437242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of hexavalent chromium on mitochondria and their implications in carcinogenesis.
    Alur A; Phillips J; Xu D
    J Environ Sci Health C Toxicol Carcinog; 2024; 42(2):109-125. PubMed ID: 38230947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide-mediated bcl-2 stabilization potentiates malignant transformation of human lung epithelial cells.
    Azad N; Iyer AK; Wang L; Lu Y; Medan D; Castranova V; Rojanasakul Y
    Am J Respir Cell Mol Biol; 2010 May; 42(5):578-85. PubMed ID: 19556603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis reveals particulate hexavalent chromium regulates key inflammatory pathways in human lung fibroblasts as a possible mechanism of carcinogenesis.
    Kouokam JC; Speer RM; Meaza I; Toyoda JH; Lu H; Wise JP
    Toxicol Appl Pharmacol; 2024 Apr; 485():116889. PubMed ID: 38479592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Positive Feedback Loop Between c-Myc Upregulation, Glycolytic Shift, and Histone Acetylation Enhances Cancer Stem Cell-like Property and Tumorigenicity of Cr(VI)-transformed Cells.
    Clementino M; Xie J; Yang P; Li Y; Lin HP; Fenske WK; Tao H; Kondo K; Yang C; Wang Z
    Toxicol Sci; 2020 Sep; 177(1):71-83. PubMed ID: 32525551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic and epitranscriptomic mechanisms of chromium carcinogenesis.
    Wang Z; Yang C
    Adv Pharmacol; 2023; 96():241-265. PubMed ID: 36858774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium (VI) promotes lung cancer initiation by activating EGF/ALDH1A1 signalling.
    Metropulos AE; Becker JH; Principe DR
    Clin Transl Discov; 2022 Dec; 2(4):. PubMed ID: 37396570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium.
    Yuan Y; Peng L; Gong-Hua H; Lu D; Xia-Li Z; Yu Z; Cai-Gao Z
    Braz J Med Biol Res; 2012 Jun; 45(6):482-7. PubMed ID: 22437481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Gene Expression Responses in the Small Intestine of Mice Following Exposure to 3 Carcinogens Using the S1500+ Gene Set Informs a Potential Common Adverse Outcome Pathway.
    Chappell GA; Rager JE; Wolf J; Babic M; LeBlanc KJ; Ring CL; Harris MA; Thompson CM
    Toxicol Pathol; 2019 Oct; 47(7):851-864. PubMed ID: 31558096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carcinogenic Risk of Pb, Cd, Ni, and Cr and Critical Ecological Risk of Cd and Cu in Soil and Groundwater around the Municipal Solid Waste Open Dump in Central Thailand.
    Aendo P; Netvichian R; Thiendedsakul P; Khaodhiar S; Tulayakul P
    J Environ Public Health; 2022; 2022():3062215. PubMed ID: 35265140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives.
    Wise JP; Young JL; Cai J; Cai L
    Environ Int; 2022 Jan; 158():106877. PubMed ID: 34547640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal additive manufacturing and possible clinical markers for the monitoring of exposure-related health effects.
    Ljunggren SA; Ward LJ; Graff P; Persson A; Lind ML; Karlsson H
    PLoS One; 2021; 16(3):e0248601. PubMed ID: 33735215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Role of Mitochondrial Respiratory Dysfunction during Hexavalent Chromium-Induced Lung Carcinogenesis.
    Wise JTF; Wang L; Alstott MC; Ngalame NNO; Wang Y; Zhang Z; Shi X
    J Environ Pathol Toxicol Oncol; 2018; 37(4):317-329. PubMed ID: 30806238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Lipogenesis Is Important for Hexavalent Chromium-Transformed Lung Cells and Xenograft Tumor Growth.
    Wise JTF; Kondo K
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069382
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.