These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 30806249)
41. [The progress in researches on biocompatibility for direct brain-machine interface]. Luo P; Xie G; Jiang Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Dec; 24(6):1416-8. PubMed ID: 18232506 [TBL] [Abstract][Full Text] [Related]
42. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Savya SP; Li F; Lam S; Wellman SM; Stieger KC; Chen K; Eles JR; Kozai TDY Biomaterials; 2022 Oct; 289():121784. PubMed ID: 36103781 [TBL] [Abstract][Full Text] [Related]
43. Tools for Surface Treatment of Silicon Planar Intracortical Microelectrodes. Krebs OK; Mittal G; Ramani S; Zhang J; Shoffstall AJ; Cogan SF; Pancrazio JJ; Capadona JR J Vis Exp; 2022 Jun; (184):. PubMed ID: 35758655 [TBL] [Abstract][Full Text] [Related]
45. A technique to prevent dural adhesions to chronically implanted microelectrode arrays. Maynard EM; Fernandez E; Normann RA J Neurosci Methods; 2000 Apr; 97(2):93-101. PubMed ID: 10788663 [TBL] [Abstract][Full Text] [Related]
46. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023 [TBL] [Abstract][Full Text] [Related]
48. Focused Ion Beam Lithography to Etch Nano-architectures into Microelectrodes. Mahajan S; Sharkins JA; Hunter AH; Avishai A; Ereifej ES J Vis Exp; 2020 Jan; (155):. PubMed ID: 32009634 [TBL] [Abstract][Full Text] [Related]
49. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain. McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828 [TBL] [Abstract][Full Text] [Related]
50. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. Rousche PJ; Normann RA J Neurosci Methods; 1998 Jul; 82(1):1-15. PubMed ID: 10223510 [TBL] [Abstract][Full Text] [Related]
51. The role of inflammation on the functionality of intracortical microelectrodes. Gaire J; Lee HC; Hilborn N; Ward R; Regan M; Otto KJ J Neural Eng; 2018 Dec; 15(6):066027. PubMed ID: 30260321 [TBL] [Abstract][Full Text] [Related]
52. A critical review of cell culture strategies for modelling intracortical brain implant material reactions. Gilmour AD; Woolley AJ; Poole-Warren LA; Thomson CE; Green RA Biomaterials; 2016 Jun; 91():23-43. PubMed ID: 26994876 [TBL] [Abstract][Full Text] [Related]
53. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance. Paralikar KJ; Clement RS IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695 [TBL] [Abstract][Full Text] [Related]
54. Neuroimmunoregulation and natural immunity. Berczi I; Chow DA; Sabbadini ER Domest Anim Endocrinol; 1998 Sep; 15(5):273-81. PubMed ID: 9785030 [TBL] [Abstract][Full Text] [Related]
55. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. Kozai TD; Du Z; Gugel ZV; Smith MA; Chase SM; Bodily LM; Caparosa EM; Friedlander RM; Cui XT J Neurosci Methods; 2015 Mar; 242():15-40. PubMed ID: 25542351 [TBL] [Abstract][Full Text] [Related]
56. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. Kipke DR; Vetter RJ; Williams JC; Hetke JF IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260 [TBL] [Abstract][Full Text] [Related]
57. Long-term intracortical microelectrode array performance in a human: a 5 year retrospective analysis. Colachis SC; Dunlap CF; Annetta NV; Tamrakar SM; Bockbrader MA; Friedenberg DA J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352736 [No Abstract] [Full Text] [Related]
58. A histological analysis of human median and ulnar nerves following implantation of Utah slanted electrode arrays. Christensen MB; Wark HA; Hutchinson DT Biomaterials; 2016 Jan; 77():235-42. PubMed ID: 26606449 [TBL] [Abstract][Full Text] [Related]
59. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Nolta NF; Christensen MB; Crane PD; Skousen JL; Tresco PA Biomaterials; 2015; 53():753-62. PubMed ID: 25890770 [TBL] [Abstract][Full Text] [Related]
60. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. Armenta Salas M; Bashford L; Kellis S; Jafari M; Jo H; Kramer D; Shanfield K; Pejsa K; Lee B; Liu CY; Andersen RA Elife; 2018 Apr; 7():. PubMed ID: 29633714 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]