These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30806410)

  • 1. DNA origami directed 3D nanoparticle superlattice via electrostatic assembly.
    Julin S; Korpi A; Nonappa ; Shen B; Liljeström V; Ikkala O; Keller A; Linko V; Kostiainen MA
    Nanoscale; 2019 Mar; 11(10):4546-4551. PubMed ID: 30806410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Lattice Engineering of Nanoparticles by DNA Shells.
    Ji M; Ma N; Tian Y
    Small; 2019 Jun; 15(26):e1805401. PubMed ID: 30785664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
    Wang P; Gaitanaros S; Lee S; Bathe M; Shih WM; Ke Y
    J Am Chem Soc; 2016 Jun; 138(24):7733-40. PubMed ID: 27224641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-Assisted Molecular Lithography.
    Shen B; Linko V; Toppari JJ
    Methods Mol Biol; 2018; 1811():299-314. PubMed ID: 29926461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami.
    Yao G; Li J; Chao J; Pei H; Liu H; Zhao Y; Shi J; Huang Q; Wang L; Huang W; Fan C
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):2966-9. PubMed ID: 25612825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing.
    Teschome B; Facsko S; Gothelf KV; Keller A
    Langmuir; 2015 Nov; 31(46):12823-9. PubMed ID: 26522180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-assisted large-scale ordering of DNA origami tiles.
    Aghebat Rafat A; Pirzer T; Scheible MB; Kostina A; Simmel FC
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7665-8. PubMed ID: 24894973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic assembly of binary nanoparticle superlattices using protein cages.
    Kostiainen MA; Hiekkataipale P; Laiho A; Lemieux V; Seitsonen J; Ruokolainen J; Ceci P
    Nat Nanotechnol; 2013 Jan; 8(1):52-6. PubMed ID: 23241655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D DNA Origami Crystals.
    Zhang T; Hartl C; Frank K; Heuer-Jungemann A; Fischer S; Nickels PC; Nickel B; Liedl T
    Adv Mater; 2018 Jul; 30(28):e1800273. PubMed ID: 29774971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically assembled DNA origami tubules with reconfigurable chirality.
    Chen H; Cha TG; Pan J; Choi JH
    Nanotechnology; 2013 Nov; 24(43):435601. PubMed ID: 24076521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined Growth of Metal Nanoparticles Within 3D DNA Origami Molds.
    Sun W; Shen J
    Methods Mol Biol; 2017; 1500():237-244. PubMed ID: 27813012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulation of Gold Nanoparticles into DNA Minimal Cages for 3D-Anisotropic Functionalization and Assembly.
    Luo X; Chidchob P; Rahbani JF; Sleiman HF
    Small; 2018 Feb; 14(5):. PubMed ID: 29205958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.
    Pilo-Pais M; Watson A; Demers S; LaBean TH; Finkelstein G
    Nano Lett; 2014; 14(4):2099-104. PubMed ID: 24645937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programming the morphology of DNA origami crystals by magnesium ion strength.
    Dai L; Hu X; Ji M; Ma N; Xing H; Zhu JJ; Min Q; Tian Y
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2302142120. PubMed ID: 37399399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.
    Shen X; Song C; Wang J; Shi D; Wang Z; Liu N; Ding B
    J Am Chem Soc; 2012 Jan; 134(1):146-9. PubMed ID: 22148355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organized architectures from assorted DNA-framed nanoparticles.
    Liu W; Halverson J; Tian Y; Tkachenko AV; Gang O
    Nat Chem; 2016 Sep; 8(9):867-73. PubMed ID: 27554413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable pH-Responsive DNA Origami Lattices.
    Julin S; Linko V; Kostiainen MA
    ACS Nano; 2023 Jun; 17(11):11014-11022. PubMed ID: 37257137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Structures for Surface-Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene.
    Prinz J; Matković A; Pešić J; Gajić R; Bald I
    Small; 2016 Oct; 12(39):5458-5467. PubMed ID: 27594092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of heterogeneous functional nanomaterials on DNA origami scaffolds.
    Wang R; Nuckolls C; Wind SJ
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11325-7. PubMed ID: 23055455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.