BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30806930)

  • 1. Transcriptome analysis of Oryza sativa in responses to different concentrations of thiocyanate.
    Lin YJ; Yu XZ; Zhang Q
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11696-11709. PubMed ID: 30806930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome reveals the crucial role of exogenous hydrogen sulfide in alleviation of thiocyanate (SCN
    Tian P; Feng YX; Li YH
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26901-26913. PubMed ID: 36374388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytotoxicity of thiocyanate to rice seedlings.
    Yu XZ; Zhang FZ; Li F
    Bull Environ Contam Toxicol; 2012 May; 88(5):703-6. PubMed ID: 22310846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of exogenous thiocyanate on mineral nutrients, antioxidative responses and free amino acids in rice seedlings.
    Yu XZ; Zhang FZ
    Ecotoxicology; 2013 May; 22(4):752-60. PubMed ID: 23549985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of utilizing nitrate (NO
    Lin YJ; Feng YX; Yu XZ
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5622-5633. PubMed ID: 34424467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jasmonic acid and hydrogen sulfide modulate transcriptional and enzymatic changes of plasma membrane NADPH oxidases (NOXs) and decrease oxidative damage in Oryza sativa L. during thiocyanate exposure.
    Yu XZ; Chu YP; Zhang H; Lin YJ; Tian P
    Ecotoxicology; 2021 Oct; 30(8):1511-1520. PubMed ID: 32821975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaseous signaling molecule H
    Feng YX; Tian P; Lin YJ; Cao DY; Li CZ; Ullah A
    Environ Pollut; 2024 Jan; 340(Pt 2):122816. PubMed ID: 37898431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of the PAL gene family in rice seedlings exposed to chromium by microarray analysis.
    Yu XZ; Fan WJ; Lin YJ; Zhang FF; Gupta DK
    Ecotoxicology; 2018 Apr; 27(3):325-335. PubMed ID: 29404866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the mitochondrial respiratory components (Complex I and Complex III) as stimuli to induce oxidative damage in Oryza sativa L. under thiocyanate exposure.
    Lin YJ; Yu XZ; Li YH; Yang L
    Chemosphere; 2020 Mar; 243():125472. PubMed ID: 31995896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.).
    Ke S; Liu XJ; Luan X; Yang W; Zhu H; Liu G; Zhang G; Wang S
    Gene; 2018 Oct; 675():285-300. PubMed ID: 29969697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarray-based expression analysis of phytohormone-related genes in rice seedlings during cyanide metabolism.
    Yu XZ; Lin YJ; Lu CJ; Gupta DK
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19701-19712. PubMed ID: 29736647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress.
    Sun L; Wang J; Song K; Sun Y; Qin Q; Xue Y
    Sci Rep; 2019 Jul; 9(1):10177. PubMed ID: 31308454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes.
    Tan M; Cheng D; Yang Y; Zhang G; Qin M; Chen J; Chen Y; Jiang M
    BMC Plant Biol; 2017 Nov; 17(1):194. PubMed ID: 29115926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-Responsive Genes are Differentially Regulated at the Chromatin Levels Between Seedlings and Roots in Rice.
    Zheng D; Wang L; Chen L; Pan X; Lin K; Fang Y; Wang XE; Zhang W
    Plant Cell Physiol; 2019 Aug; 60(8):1790-1803. PubMed ID: 31111914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic analysis of cytochrome P450 genes and pathways involved in chromium toxicity in Oryza sativa.
    Yu XZ; Lu CJ; Tang S; Zhang Q
    Ecotoxicology; 2020 Jul; 29(5):503-513. PubMed ID: 31119592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).
    Zhou Y; Yang P; Cui F; Zhang F; Luo X; Xie J
    PLoS One; 2016; 11(1):e0146242. PubMed ID: 26752408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-seq reveals the downregulated proteins related to photosynthesis in growth-inhibited rice seedlings induced by low-energy N+ beam implantation.
    Chen QF; Ya HY; Wang WD; Jiao Z
    Genet Mol Res; 2014 Mar; 13(3):7029-36. PubMed ID: 24737518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth, nutrient uptake and transcriptome profiling of rice seedlings in response to mixed provision of ammonium- and nitrate-nitrogen.
    Fu Y; Zhong X; Lu C; Liang K; Pan J; Hu X; Hu R; Li M; Ye Q; Liu Y
    J Plant Physiol; 2023 May; 284():153976. PubMed ID: 37028191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing.
    Zhang T; Huang L; Wang Y; Wang W; Zhao X; Zhang S; Zhang J; Hu F; Fu B; Li Z
    PLoS One; 2017; 12(11):e0188625. PubMed ID: 29190752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morpho-physiological and transcriptome profiling reveal novel zinc deficiency-responsive genes in rice.
    Bandyopadhyay T; Mehra P; Hairat S; Giri J
    Funct Integr Genomics; 2017 Sep; 17(5):565-581. PubMed ID: 28293806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.