These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30807144)

  • 1. Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes.
    Bauer MR; Mackey MD
    J Med Chem; 2019 Mar; 62(6):3036-3050. PubMed ID: 30807144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic Energy in Protein-Ligand Complexes.
    Bitencourt-Ferreira G; Veit-Acosta M; de Azevedo WF
    Methods Mol Biol; 2019; 2053():67-77. PubMed ID: 31452099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of electrostatic complements to proteins: a case of charge stabilized binding.
    Chong LT; Dempster SE; Hendsch ZS; Lee LP; Tidor B
    Protein Sci; 1998 Jan; 7(1):206-10. PubMed ID: 9514276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic complementarity between proteins and ligands. 3. Structural basis.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):545-64. PubMed ID: 7876900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic Complementarity in Structure-Based Drug Design.
    Cons BD; Twigg DG; Kumar R; Chessari G
    J Med Chem; 2022 Jun; 65(11):7476-7488. PubMed ID: 35512344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge optimization leads to favorable electrostatic binding free energy.
    Kangas E; Tidor B
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5958-61. PubMed ID: 11969577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatics in proteins and protein-ligand complexes.
    Kukić P; Nielsen JE
    Future Med Chem; 2010 Apr; 2(4):647-66. PubMed ID: 21426012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic complementarity between proteins and ligands. 1. Charge disposition, dielectric and interface effects.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):513-25. PubMed ID: 7876898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the diversity of physicochemical environments experienced by identical ligands in binding pockets of unrelated proteins.
    Kahraman A; Morris RJ; Laskowski RA; Favia AD; Thornton JM
    Proteins; 2010 Apr; 78(5):1120-36. PubMed ID: 19927322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic complementarity between proteins and ligands. 2. Ligand moieties.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):527-44. PubMed ID: 7876899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Protein-Ligand Electrostatic Interactions Using an Alchemical Free-Energy Method.
    Wade AD; Huggins DJ
    J Chem Theory Comput; 2019 Nov; 15(11):6504-6512. PubMed ID: 31584802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy landscapes of encounter complexes in protein-protein association.
    Camacho CJ; Weng Z; Vajda S; DeLisi C
    Biophys J; 1999 Mar; 76(3):1166-78. PubMed ID: 10049302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic complementarity at protein/protein interfaces.
    McCoy AJ; Chandana Epa V; Colman PM
    J Mol Biol; 1997 May; 268(2):570-84. PubMed ID: 9159491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs.
    Böhm HJ
    J Comput Aided Mol Des; 1998 Jul; 12(4):309-23. PubMed ID: 9777490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic Potential Energy in Protein-Drug Complexes.
    Bitencourt-Ferreira G; de Azevedo Junior WF
    Curr Med Chem; 2021; 28(24):4954-4971. PubMed ID: 33593246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics calculation of protein-ligand interactions by QM/MM polarizable charge parameters.
    Wang J; Shao Q; Cossins BP; Shi J; Chen K; Zhu W
    J Biomol Struct Dyn; 2016; 34(1):163-76. PubMed ID: 25761118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli glutaminyl-tRNA synthetase is electrostatically optimized for binding of its cognate substrates.
    Green DF; Tidor B
    J Mol Biol; 2004 Sep; 342(2):435-52. PubMed ID: 15327945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.
    Bohacek RS; McMartin C
    J Med Chem; 1992 May; 35(10):1671-84. PubMed ID: 1588550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of electrostatic interactions.
    Green DF; Tidor B
    Curr Protoc Bioinformatics; 2003 Aug; Chapter 8():Unit 8.3. PubMed ID: 18428710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of the Interfacial Electrostatic Complementarity: A Method for Analysis of Protein-Protein Interaction Based on
    Ozono H; Ishikawa T
    J Chem Theory Comput; 2021 Sep; 17(9):5600-5610. PubMed ID: 34432447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.