BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30807173)

  • 1. New Insights into the Effects of Surface Functionalization on the Peroxidase Activity of Cytochrome c Adsorbed on Silica Nanoparticles.
    Tarpani L; Bellezza F; Sassi P; Gambucci M; Cipiciani A; Latterini L
    J Phys Chem B; 2019 Mar; 123(11):2567-2575. PubMed ID: 30807173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome C on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity.
    Shang W; Nuffer JH; Muñiz-Papandrea VA; Colón W; Siegel RW; Dordick JS
    Small; 2009 Apr; 5(4):470-6. PubMed ID: 19189325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing stability and oxidation activity of cytochrome C by immobilization in the nanochannels of mesoporous aluminosilicates.
    Lee CH; Lang J; Yen CW; Shih PC; Lin TS; Mou CY
    J Phys Chem B; 2005 Jun; 109(25):12277-86. PubMed ID: 16852515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and catalytic behavior of myoglobin adsorbed onto nanosized hydrotalcites.
    Bellezza F; Cipiciani A; Latterini L; Posati T; Sassi P
    Langmuir; 2009 Sep; 25(18):10918-24. PubMed ID: 19735144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulations of cytochrome c adsorption on positively charged surfaces: the influence of anion type and concentration.
    Peng C; Liu J; Xie Y; Zhou J
    Phys Chem Chem Phys; 2016 Apr; 18(15):9979-89. PubMed ID: 26980271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers.
    Feifel SC; Lisdat F
    J Nanobiotechnology; 2011 Dec; 9():59. PubMed ID: 22208693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode.
    Jiang X; Wang Y; Qu X; Dong S
    Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous Waveguide Spectroscopy for the Estimation of Enzyme Adsorption on Mesoporous Silica.
    Arafune H; Hotta K; Itoh T; Teramae N; Yamaguchi A
    Anal Sci; 2017; 33(4):473-476. PubMed ID: 28392523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of surface immobilization and solution ionic strength on the formal potential of immobilized cytochrome C.
    Petrović J; Clark RA; Yue H; Waldeck DH; Bowden EF
    Langmuir; 2005 Jul; 21(14):6308-16. PubMed ID: 15982036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface electric field manipulation of the adsorption kinetics and biocatalytic properties of cytochrome c on a 3D macroporous Au electrode.
    Song YY; Li Y; Yang C; Xia XH
    Anal Bioanal Chem; 2008 Jan; 390(1):333-41. PubMed ID: 17955215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of cytochrome c on the cylindrical mesoporous silica extrudates.
    Chandrasekar G; Hartmann M; Murugesan V
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2606-13. PubMed ID: 24745270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-Induced reorientation of cytochrome c on silica nanoparticles.
    Meissner J; Wu Y; Jestin J; Shelton WA; Findenegg GH; Bharti B
    Soft Matter; 2019 Jan; 15(3):350-354. PubMed ID: 30468443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The selective interaction between silica nanoparticles and enzymes from molecular dynamics simulations.
    Sun X; Feng Z; Zhang L; Hou T; Li Y
    PLoS One; 2014; 9(9):e107696. PubMed ID: 25243748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic liquid-induced all-α to α + β conformational transition in cytochrome c with improved peroxidase activity in aqueous medium.
    Bharmoria P; Trivedi TJ; Pabbathi A; Samanta A; Kumar A
    Phys Chem Chem Phys; 2015 Apr; 17(15):10189-99. PubMed ID: 25798458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytically active silica nanoparticle-based supramolecular architectures of two proteins--cellobiose dehydrogenase and cytochrome C on electrodes.
    Feifel SC; Ludwig R; Gorton L; Lisdat F
    Langmuir; 2012 Jun; 28(25):9189-94. PubMed ID: 22663060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Striking improvement in peroxidase activity of cytochrome c by modulating hydrophobicity of surface-functionalized gold nanoparticles within cationic reverse micelles.
    Maiti S; Das K; Dutta S; Das PK
    Chemistry; 2012 Nov; 18(47):15021-30. PubMed ID: 23018861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Function of Adsorbed Hemoglobin on Silica Nanoparticles: Relationship between the Adsorption Process and the Oxygen Binding Properties.
    Devineau S; Zargarian L; Renault JP; Pin S
    Langmuir; 2017 Apr; 33(13):3241-3252. PubMed ID: 28263607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery.
    Park HS; Kim CW; Lee HJ; Choi JH; Lee SG; Yun YP; Kwon IC; Lee SJ; Jeong SY; Lee SC
    Nanotechnology; 2010 Jun; 21(22):225101. PubMed ID: 20453291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome c Stabilization and Immobilization in Aerogels.
    Harper-Leatherman AS; Wallace JM; Rolison DR
    Methods Mol Biol; 2017; 1504():149-163. PubMed ID: 27770420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.