BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30807173)

  • 21. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region.
    Tomášková N; Varhač R; Lysáková V; Musatov A; Sedlák E
    Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1073-1083. PubMed ID: 30282605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of functionalization of mesoporous silica nanoparticles on the interaction and stability of confined enzyme.
    Falahati M; Saboury AA; Ma'mani L; Shafiee A; Rafieepour HA
    Int J Biol Macromol; 2012 May; 50(4):1048-54. PubMed ID: 22421216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid-based anti-fouling functionalization of silica nanoparticles using divinyl sulfone.
    Wang H; Cheng F; Shen W; Cheng G; Zhao J; Peng W; Qu J
    Acta Biomater; 2016 Aug; 40():273-281. PubMed ID: 27032480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation volumes of enzymes adsorbed on silica particles.
    Schuabb V; Czeslik C
    Langmuir; 2014 Dec; 30(51):15496-503. PubMed ID: 25479476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytochrome c as a Peroxidase: Activation of the Precatalytic Native State by H
    Yin V; Shaw GS; Konermann L
    J Am Chem Soc; 2017 Nov; 139(44):15701-15709. PubMed ID: 29048162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic and circular dichroism studies of enzymes adsorbed on ultrafine silica particles.
    Kondo A; Murakami F; Kawagoe M; Higashitani K
    Appl Microbiol Biotechnol; 1993 Aug; 39(6):726-31. PubMed ID: 7764118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells.
    Méndez J; Morales Cruz M; Delgado Y; Figueroa CM; Orellano EA; Morales M; Monteagudo A; Griebenow K
    Mol Pharm; 2014 Jan; 11(1):102-11. PubMed ID: 24294910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of Flavin-Dependent Fructose Dehydrogenase with Cytochrome c as Basis for the Construction of Biomacromolecular Architectures on Electrodes.
    Wettstein C; Kano K; Schäfer D; Wollenberger U; Lisdat F
    Anal Chem; 2016 Jun; 88(12):6382-9. PubMed ID: 27213223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extractive solubilization, structural change, and functional conversion of cytochrome c in ionic liquids via crown ether complexation.
    Shimojo K; Kamiya N; Tani F; Naganawa H; Naruta Y; Goto M
    Anal Chem; 2006 Nov; 78(22):7735-42. PubMed ID: 17105166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilization of yeast cytochrome C covalently immobilized on fused silica surfaces.
    Cheng YY; Chang HC; Hoops G; Su MC
    J Am Chem Soc; 2004 Sep; 126(35):10828-9. PubMed ID: 15339152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing redox reactions of immobilized cytochrome c using evanescent wave cavity ring-down spectroscopy in a thin-layer electrochemical cell.
    Powell HV; Schnippering M; Cheung M; Macpherson JV; Mackenzie SR; Stavros VG; Unwin PR
    Chemphyschem; 2010 Sep; 11(13):2985-91. PubMed ID: 20669212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How Nanoparticles Modify Adsorbed Proteins: Impact of Silica Nanoparticles on the Hemoglobin Active Site.
    Giraudon-Colas G; Devineau S; Marichal L; Barruet E; Zitolo A; Renault JP; Pin S
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions.
    Sun MH; Liu SQ; Du KJ; Nie CM; Lin YW
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():130-7. PubMed ID: 24051281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct electrochemical and spectroscopic assessment of heme integrity in multiphoton photo-cross-linked cytochrome C structures.
    Lyon JL; Hill RT; Shear JB; Stevenson KJ
    Anal Chem; 2007 Mar; 79(6):2303-11. PubMed ID: 17288462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soybean peroxidase immobilized onto silica-coated superparamagnetic iron oxide nanoparticles: Effect of silica layer on the enzymatic activity.
    Donadelli JA; García Einschlag FS; Laurenti E; Magnacca G; Carlos L
    Colloids Surf B Biointerfaces; 2018 Jan; 161():654-661. PubMed ID: 29169120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of the electrostatic interaction on the redox reaction of positively charged cytochrome C adsorbed on the negatively charged surfaces of acid-terminated alkanethiol monolayers on a Au(111) electrode.
    Imabayashi S; Mita T; Kakiuchi T
    Langmuir; 2005 Feb; 21(4):1470-4. PubMed ID: 15697296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH-Dependent peroxidase activity of yeast cytochrome c and its triple mutant adsorbed on kaolinite.
    Ranieri A; Bernini F; Bortolotti CA; Bonifacio A; Sergo V; Castellini E
    Langmuir; 2011 Sep; 27(17):10683-90. PubMed ID: 21776978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the influence of solvent type and pH on protein adsorption onto silica surface by evanescent-wave cavity ring-down spectroscopy.
    Alnaanah SA; Mendes SB
    Anal Sci; 2024 Jun; 40(6):1089-1099. PubMed ID: 38512454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrostatic Effect of Functional Surfaces on the Activity of Adsorbed Enzymes: Simulations and Experiments.
    Zheng H; Yang SJ; Zheng YC; Cui Y; Zhang Z; Zhong JY; Zhou J
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35676-35687. PubMed ID: 32649833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.