BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30807693)

  • 1. Strain-Energy Release in Bent Semiconductor Nanowires Occurring by Polygonization or Nanocrack Formation.
    Sun Z; Huang C; Guo J; Dong JT; Klie RF; Lauhon LJ; Seidman DN
    ACS Nano; 2019 Mar; 13(3):3730-3738. PubMed ID: 30807693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.
    Rieger T; Zellekens P; Demarina N; Hassan AA; Hackemüller FJ; Lüth H; Pietsch U; Schäpers T; Grützmacher D; Lepsa MI
    Nanoscale; 2017 Nov; 9(46):18392-18401. PubMed ID: 29147699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core-Shell Nanowires As Revealed by in situ Transmission Electron Microscopy.
    Zhang C; Kvashnin DG; Bourgeois L; Fernando JFS; Firestein K; Sorokin PB; Fukata N; Golberg D
    Nano Lett; 2018 Nov; 18(11):7238-7246. PubMed ID: 30346785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain Mapping and Raman Spectroscopy of Bent GaP and GaAs Nanowires.
    Im HS; Park K; Kim J; Kim D; Lee J; Lee JA; Park J; Ahn JP
    ACS Omega; 2018 Mar; 3(3):3129-3135. PubMed ID: 31458573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ analysis of strain relaxation during catalyst-free nucleation and growth of GaN nanowires.
    Knelangen M; Consonni V; Trampert A; Riechert H
    Nanotechnology; 2010 Jun; 21(24):245705. PubMed ID: 20484796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires.
    Dayeh SA; Tang W; Boioli F; Kavanagh KL; Zheng H; Wang J; Mack NH; Swadener G; Huang JY; Miglio L; Tu KN; Picraux ST
    Nano Lett; 2013 May; 13(5):1869-76. PubMed ID: 23030346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaching the ideal elastic strain limit in silicon nanowires.
    Zhang H; Tersoff J; Xu S; Chen H; Zhang Q; Zhang K; Yang Y; Lee CS; Tu KN; Li J; Lu Y
    Sci Adv; 2016 Aug; 2(8):e1501382. PubMed ID: 27540586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires.
    Wang L; Zheng K; Zhang Z; Han X
    Nano Lett; 2011 Jun; 11(6):2382-5. PubMed ID: 21545162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core-Shell Heterostructures.
    Lewis RB; Corfdir P; Küpers H; Flissikowski T; Brandt O; Geelhaar L
    Nano Lett; 2018 Apr; 18(4):2343-2350. PubMed ID: 29570304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain.
    Signorello G; Karg S; Björk MT; Gotsmann B; Riel H
    Nano Lett; 2013 Mar; 13(3):917-24. PubMed ID: 23237482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Five-Step Heteroepitaxial Growth of GaAs Nanowires on Silicon Substrates and the Twin Formation Mechanism.
    Yao M; Sheng C; Ge M; Chi CY; Cong S; Nakano A; Dapkus PD; Zhou C
    ACS Nano; 2016 Feb; 10(2):2424-35. PubMed ID: 26831573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge-Si Core-Shell Nanowires.
    Conesa-Boj S; Li A; Koelling S; Brauns M; Ridderbos J; Nguyen TT; Verheijen MA; Koenraad PM; Zwanenburg FA; Bakkers EP
    Nano Lett; 2017 Apr; 17(4):2259-2264. PubMed ID: 28231017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing strain in bent semiconductor nanowires with Raman spectroscopy.
    Chen J; Conache G; Pistol ME; Gray SM; Borgström MT; Xu H; Xu HQ; Samuelson L; Håkanson U
    Nano Lett; 2010 Apr; 10(4):1280-6. PubMed ID: 20192231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction.
    Qin Q; Yin S; Cheng G; Li X; Chang TH; Richter G; Zhu Y; Gao H
    Nat Commun; 2015 Jan; 6():5983. PubMed ID: 25585295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bent Polytypic ZnSe and CdSe Nanowires Probed by Photoluminescence.
    Kim Y; Im HS; Park K; Kim J; Ahn JP; Yoo SJ; Kim JG; Park J
    Small; 2017 May; 13(19):. PubMed ID: 28296175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistically Analyzed Photoresponse of Elastically Bent CdS Nanowires Probed by Light-Compatible In Situ High-Resolution TEM.
    Zhang C; Cretu O; Kvashnin DG; Kawamoto N; Mitome M; Wang X; Bando Y; Sorokin PB; Golberg D
    Nano Lett; 2016 Oct; 16(10):6008-6013. PubMed ID: 27606954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-mediated bandgap engineering of straight and bent semiconductor nanowires.
    Lim B; Cui XY; Ringer SP
    Phys Chem Chem Phys; 2021 Mar; 23(9):5407-5414. PubMed ID: 33646229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires.
    Boland JL; Tütüncüoglu G; Gong JQ; Conesa-Boj S; Davies CL; Herz LM; Fontcuberta I Morral A; Johnston MB
    Nanoscale; 2017 Jun; 9(23):7839-7846. PubMed ID: 28555685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires.
    Cheng G; Zhang Y; Chang TH; Liu Q; Chen L; Lu WD; Zhu T; Zhu Y
    Nano Lett; 2019 Aug; 19(8):5327-5334. PubMed ID: 31314538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.