These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30807737)

  • 1. Precise determination of heme binding affinity in proteins.
    Leung GC; Fung SS; Dovey NRB; Raven EL; Hudson AJ
    Anal Biochem; 2019 May; 572():45-51. PubMed ID: 30807737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus.
    Liu M; Tanaka WN; Zhu H; Xie G; Dooley DM; Lei B
    J Biol Chem; 2008 Mar; 283(11):6668-76. PubMed ID: 18184657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme interplay between IlsA and IsdC: Two structurally different surface proteins from Bacillus cereus.
    Abi-Khalil E; Segond D; Terpstra T; André-Leroux G; Kallassy M; Lereclus D; Bou-Abdallah F; Nielsen-Leroux C
    Biochim Biophys Acta; 2015 Sep; 1850(9):1930-41. PubMed ID: 26093289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway for heme uptake from human methemoglobin by the iron-regulated surface determinants system of Staphylococcus aureus.
    Zhu H; Xie G; Liu M; Olson JS; Fabian M; Dooley DM; Lei B
    J Biol Chem; 2008 Jun; 283(26):18450-60. PubMed ID: 18467329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton NMR study of the myoglobin reconstituted with meso-tetra(n-propyl)hemin.
    Neya S; Funasaki N
    Biochim Biophys Acta; 1988 Jan; 952(2):150-7. PubMed ID: 2827777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stability of holomyoglobin is determined by heme affinity.
    Hargrove MS; Olson JS
    Biochemistry; 1996 Sep; 35(35):11310-8. PubMed ID: 8784185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of apo-cytochrome b5 with cytochromes P4503A4 and P45017A: relevance of heme transfer reactions.
    Guryev OL; Gilep AA; Usanov SA; Estabrook RW
    Biochemistry; 2001 Apr; 40(16):5018-31. PubMed ID: 11305918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of heme with amphiphilic peptides: use of hemin-CN to probe the interaction of calmodulin with its target peptides.
    Leclerc E; Leclerc L; Poyart C; Marden MC
    Arch Biochem Biophys; 1993 Oct; 306(1):158-62. PubMed ID: 8215397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of myoglobin from apoprotein and heme, monitored by stopped-flow absorption, fluorescence and circular dichroism.
    Kawamura-Konishi Y; Kihara H; Suzuki H
    Eur J Biochem; 1988 Jan; 170(3):589-95. PubMed ID: 3338455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of heme in the unfolding and assembly of myoglobin.
    Culbertson DS; Olson JS
    Biochemistry; 2010 Jul; 49(29):6052-63. PubMed ID: 20540498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 19F NMR study of protein-induced rhombic perturbations on the electronic structure of the active site of myoglobin.
    Yamamoto Y; Hirai Y; Suzuki A
    J Biol Inorg Chem; 2000 Aug; 5(4):455-62. PubMed ID: 10968616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequence of rapid heme rotation to the oxygen binding of myoglobin.
    Neya S; Funasaki N; Shiro Y; Iizuka T; Imai K
    Biochim Biophys Acta; 1994 Sep; 1208(1):31-7. PubMed ID: 8086436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive activation of dioxygen by a myoglobin reconstituted with a flavohemin.
    Matsuo T; Hayashi T; Hisaeda Y
    J Am Chem Soc; 2002 Sep; 124(38):11234-5. PubMed ID: 12236714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution NMR determination of the seating(s) of meso-nitro-etioheme-1 in myoglobin: implications for steric constraints to meso position access in heme degradation by coupled oxidation.
    Wang J; Li Y; Ma D; Kalish H; Balch AL; La Mar GN
    J Am Chem Soc; 2001 Aug; 123(33):8080-8. PubMed ID: 11506564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-induced denaturation of myoglobin studied by time-resolved electrospray ionization mass spectrometry.
    Konermann L; Rosell FI; Mauk AG; Douglas DJ
    Biochemistry; 1997 May; 36(21):6448-54. PubMed ID: 9174361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serine92 (F7) contributes to the control of heme reactivity and stability in myoglobin.
    Smerdon SJ; Krzywda S; Wilkinson AJ; Brantley RE; Carver TE; Hargrove MS; Olson JS
    Biochemistry; 1993 May; 32(19):5132-8. PubMed ID: 8494890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized apo-myoglobin, a new stable reagent for measuring rates of heme dissociation from hemoglobin.
    Gattoni M; Boffi A; Chiancone E
    FEBS Lett; 1998 Mar; 424(3):275-8. PubMed ID: 9539166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A protein with multiple heme-binding sites from rabbit serum.
    Tsutsui K; Mueller GC
    J Biol Chem; 1982 Apr; 257(7):3925-31. PubMed ID: 6277954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of heme on the conformational stability of micro-myoglobin.
    Ji HF; Shen L; Grandori R; Müller N
    FEBS J; 2008 Jan; 275(1):89-96. PubMed ID: 18039332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of heme analogues to intentionally modify heme-globin interactions in myoglobin.
    Neya S; Nagai M; Nagatomo S; Hoshino T; Yoneda T; Kawaguchi AT
    Biochim Biophys Acta; 2016 May; 1857(5):582-588. PubMed ID: 26435388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.