BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30807947)

  • 21. Enhancement of the carbohydrate content in Spirulina by applying CO
    Braga VDS; Moreira JB; Costa JAV; Morais MG
    Int J Biol Macromol; 2019 Feb; 123():1241-1247. PubMed ID: 30521909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tolerance of the Photosynthetic Apparatus to Acidification of the Growth Medium as a Possible Determinant of CO
    Ptushenko VV; Solovchenko AE
    Biochemistry (Mosc); 2016 Dec; 81(12):1531-1537. PubMed ID: 28259130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH.
    Markou G; Vandamme D; Muylaert K
    Bioresour Technol; 2014 Aug; 166():259-65. PubMed ID: 24926597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of CO
    Chekanov K; Schastnaya E; Solovchenko A; Lobakova E
    J Photochem Photobiol B; 2017 Jun; 171():58-66. PubMed ID: 28475936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of ammonium sulphate feeding time on fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control.
    Rodrigues MS; Ferreira LS; Converti A; Sato S; de Carvalho JC
    Bioresour Technol; 2011 Jun; 102(11):6587-92. PubMed ID: 21507628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon dioxide capture strategies from flue gas using microalgae: a review.
    Thomas DM; Mechery J; Paulose SV
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):16926-40. PubMed ID: 27397026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin.
    da Silva Vaz B; Costa JA; de Morais MG
    Appl Biochem Biotechnol; 2016 Jan; 178(2):418-29. PubMed ID: 26453033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced biomass productivity of Arthrospira platensis using zeolitic imidazolate framework-8 as carbon dioxide adsorbents.
    Cheng J; Zhu Y; Xu X; Zhang Z; Yang W
    Bioresour Technol; 2019 Dec; 294():122118. PubMed ID: 31518696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon dioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO
    Cabello J; Morales M; Revah S
    Sci Total Environ; 2017 Apr; 584-585():1310-1316. PubMed ID: 28187940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CO₂ from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source.
    Matsudo MC; Bezerra RP; Converti A; Sato S; Carvalho JC
    Biotechnol Prog; 2011; 27(3):650-6. PubMed ID: 21448973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilization of recovered nitrogen from hydrothermal carbonization process by Arthrospira platensis.
    Yao C; Pan Y; Lu H; Wu P; Meng Y; Cao X; Xue S
    Bioresour Technol; 2016 Jul; 212():26-34. PubMed ID: 27070286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of carbon concentration, pH, and bubbling depth on carbon dioxide absorption ratio in microalgae medium.
    Yin D; Wang Z; Wen X; Ding Y; Hou X; Geng Y; Li Y
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):32902-32910. PubMed ID: 31512136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergic association of the consortium Arthrospira maxima with the microalga growth-promoting bacterium Azospirillum cultured under the stressful biogas composition.
    Choix FJ; Palacios OA; Mondragón-Cortez P; Ocampo-Alvarez H; Becerril-Espinosa A; Lara-González MA; Juárez-Carrillo E
    Bioprocess Biosyst Eng; 2024 Feb; 47(2):181-193. PubMed ID: 38231212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced generation time and size of carbon dioxide bubbles in a volute aerator for improving Spirulina sp. growth.
    Cheng J; Miao Y; Guo W; Song Y; Tian J; Zhou J
    Bioresour Technol; 2018 Dec; 270():352-358. PubMed ID: 30243242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
    Yen HW; Ho SH; Chen CY; Chang JS
    Biotechnol J; 2015 Jun; 10(6):829-39. PubMed ID: 25931246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulating CO₂ leakages from CCS to determine Zn toxicity using the marine microalgae Pleurochrysis roscoffensis.
    Bautista-Chamizo E; De Orte MR; DelValls TÁ; Riba I
    Chemosphere; 2016 Feb; 144():955-65. PubMed ID: 26432538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microalgae screening under CO
    Hussain F; Shah SZ; Zhou W; Iqbal M
    J Photochem Photobiol B; 2017 May; 170():91-98. PubMed ID: 28410484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elevated CO2 induces a bloom of microphytobenthos within a shell gravel mesocosm.
    Tait K; Beesley A; Findlay HS; McNeill CL; Widdicombe S
    FEMS Microbiol Ecol; 2015 Aug; 91(8):fiv092. PubMed ID: 26220309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic model for effects of simulated flue gas onto growth profiles of Chlorella sp. AE10 and Chlorella sp. Cv.
    Cheng D; Li X; Yuan Y; Zhao Q
    Biotechnol Appl Biochem; 2020 Sep; 67(5):783-789. PubMed ID: 31584216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mixed microalgae consortia growth under higher concentration of CO
    Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M
    J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.