These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30807991)

  • 1. Interaction of inhalable volatile organic compounds and pulmonary surfactant: Potential hazards of VOCs exposure to lung.
    Zhao Q; Li Y; Chai X; Xu L; Zhang L; Ning P; Huang J; Tian S
    J Hazard Mater; 2019 May; 369():512-520. PubMed ID: 30807991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of pulmonary surfactant with silica and polycyclic aromatic hydrocarbons: Implications for respiratory health.
    Zhao Q; Li Y; Chai X; Geng Y; Cao Y; Xu L; Zhang L; Huang J; Ning P; Tian S
    Chemosphere; 2019 May; 222():603-610. PubMed ID: 30731380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial interaction between benzo[a]pyrene and pulmonary surfactant: Adverse effects on lung health.
    Cao Y; Zhao Q; Geng Y; Li Y; Huang J; Tian S; Ning P
    Environ Pollut; 2021 Oct; 287():117669. PubMed ID: 34426389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of industrial smelting soot particles with pulmonary surfactant: Pulmonary toxicity of heavy metal-rich particles.
    Fang Q; Zhao Q; Chai X; Li Y; Tian S
    Chemosphere; 2020 May; 246():125702. PubMed ID: 31927361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant.
    Tatur S; Badia A
    Langmuir; 2012 Jan; 28(1):628-39. PubMed ID: 22118426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrepancy between phase behavior of lung surfactant phospholipids and the classical model of surfactant function.
    Piknova B; Schief WR; Vogel V; Discher BM; Hall SB
    Biophys J; 2001 Oct; 81(4):2172-80. PubMed ID: 11566788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversibly enhanced aqueous solubilization of volatile organic compounds using a redox-reversible surfactant.
    Li Y; Tian S; Mo H; Ning P
    J Environ Sci (China); 2011; 23(9):1486-90. PubMed ID: 22432284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial organizations of gel phospholipid and cholesterol in bovine lung surfactant films.
    Nag K; Fritzen-Garcia M; Devraj R; Panda AK
    Langmuir; 2007 Apr; 23(8):4421-31. PubMed ID: 17341098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and structural characterization of a mixed perfluorocarbon-phospholipid ternary monolayer surfactant system.
    Eftaiha AF; Brunet SM; Paige MF
    J Colloid Interface Sci; 2012 Feb; 368(1):356-65. PubMed ID: 22047922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of albumin and erythrocyte membranes on spread monolayers of lung surfactant lipids.
    Rachana R; Banerjee R
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):9-17. PubMed ID: 16650737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of pulmonary surfactant protein SP-A to monolayers of phospholipids containing hydrophobic surfactant protein SP-B or SP-C: potential differential role for tertiary interaction of lipids, hydrophobic proteins, and SP-A.
    Taneva SG; Keough KM
    Biochemistry; 2000 May; 39(20):6083-93. PubMed ID: 10821681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal description of BTEX volatile organic compounds in a Middle Eastern megacity: Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR).
    Amini H; Hosseini V; Schindler C; Hassankhany H; Yunesian M; Henderson SB; Künzli N
    Environ Pollut; 2017 Jul; 226():219-229. PubMed ID: 28432965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase separation in monolayers of pulmonary surfactant phospholipids at the air-water interface: composition and structure.
    Discher BM; Schief WR; Vogel V; Hall SB
    Biophys J; 1999 Oct; 77(4):2051-61. PubMed ID: 10512825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential hazards associated with interactions between diesel exhaust particulate matter and pulmonary surfactant.
    Geng Y; Cao Y; Zhao Q; Li Y; Tian S
    Sci Total Environ; 2022 Feb; 807(Pt 3):151031. PubMed ID: 34666082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of clinical pulmonary surfactants using atomic force microscopy.
    Zhang H; Fan Q; Wang YE; Neal CR; Zuo YY
    Biochim Biophys Acta; 2011 Jul; 1808(7):1832-42. PubMed ID: 21439262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of gaseous volatile organic compounds using a rotating biological filter.
    Padhi SK; Gokhale S
    Bioresour Technol; 2017 Nov; 244(Pt 1):270-280. PubMed ID: 28780260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of nano carbon particles and anthracene with pulmonary surfactant: The potential hazards of inhaled nanoparticles.
    Zhao Q; Li Y; Chai X; Zhang L; Xu L; Huang J; Ning P; Tian S
    Chemosphere; 2019 Jan; 215():746-752. PubMed ID: 30352372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films.
    Nag K; Taneva SG; Perez-Gil J; Cruz A; Keough KM
    Biophys J; 1997 Jun; 72(6):2638-50. PubMed ID: 9168039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of mixed monolayers of clinical lung surfactant, serum albumin and hydrophilic polymers.
    Minkov I; Mircheva K; Grozev N; Tz I; Panaiotov I
    Colloids Surf B Biointerfaces; 2013 Jan; 101():135-42. PubMed ID: 22796783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers.
    Nag K; Perez-Gil J; Cruz A; Keough KM
    Biophys J; 1996 Jul; 71(1):246-56. PubMed ID: 8804608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.