BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30808164)

  • 1. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway.
    Liu H; Fan J; Wang C; Li C; Zhou X
    J Agric Food Chem; 2019 Apr; 67(13):3723-3732. PubMed ID: 30808164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study of heterologous efficient synthesis of β-amyrin and high-density fermentation].
    Sun MC; Chao EK; Su XY; Zhu M; Su Y; Qian GT; Chen SL; Wang CX; Xue JP
    Zhongguo Zhong Yao Za Zhi; 2019 Apr; 44(7):1341-1349. PubMed ID: 31090290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering
    Du MM; Zhu ZT; Zhang GG; Zhao YQ; Gao B; Tao XY; Liu M; Ren YH; Wang FQ; Wei DZ
    J Agric Food Chem; 2022 Jan; 70(1):229-237. PubMed ID: 34955018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy.
    Lv X; Xie W; Lu W; Guo F; Gu J; Yu H; Ye L
    J Biotechnol; 2014 Sep; 186():128-36. PubMed ID: 25016205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae.
    Rodriguez S; Denby CM; Van Vu T; Baidoo EE; Wang G; Keasling JD
    Microb Cell Fact; 2016 Mar; 15():48. PubMed ID: 26939608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a Balanced Acetyl Coenzyme A Metabolism in
    Su B; Lai P; Yang F; Li A; Deng MR; Zhu H
    J Agric Food Chem; 2022 Apr; 70(13):4019-4029. PubMed ID: 35319878
    [No Abstract]   [Full Text] [Related]  

  • 7. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2
    Zhang Q; Yu S; Lyu Y; Zeng W; Zhou J
    ACS Synth Biol; 2021 May; 10(5):1166-1175. PubMed ID: 33877810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of Soyasapogenol B by Engineered Saccharomyces cerevisiae.
    Li M; Zhao M; Wei P; Zhang C; Lu W
    Appl Biochem Biotechnol; 2021 Oct; 193(10):3202-3213. PubMed ID: 34097255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering acetyl-CoA supply and ERG9 repression to enhance mevalonate production in Saccharomyces cerevisiae.
    Wegner SA; Chen JM; Ip SS; Zhang Y; Dugar D; Avalos JL
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34351398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM; Kozak BU; Pronk JT; van Maris AJA
    Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Productive Amyrin Synthases for Efficient α-Amyrin Synthesis in Engineered Saccharomyces cerevisiae.
    Yu Y; Chang P; Yu H; Ren H; Hong D; Li Z; Wang Y; Song H; Huo Y; Li C
    ACS Synth Biol; 2018 Oct; 7(10):2391-2402. PubMed ID: 30216049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae.
    Lv X; Wang F; Zhou P; Ye L; Xie W; Xu H; Yu H
    Nat Commun; 2016 Sep; 7():12851. PubMed ID: 27650330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 15. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism.
    Krivoruchko A; Serrano-Amatriain C; Chen Y; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production.
    Zhang C; Li M; Zhao GR; Lu W
    J Agric Food Chem; 2020 Feb; 68(5):1382-1389. PubMed ID: 31944688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply.
    Liang WF; Cui LY; Cui JY; Yu KW; Yang S; Wang TM; Guan CG; Zhang C; Xing XH
    Metab Eng; 2017 Jan; 39():159-168. PubMed ID: 27919791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae.
    Zhang Y; Su M; Qin N; Nielsen J; Liu Z
    Microb Cell Fact; 2020 Dec; 19(1):226. PubMed ID: 33302960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae.
    Huang G; Li J; Lin J; Duan C; Yan G
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38621758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.
    Song JY; Park JS; Kang CD; Cho HY; Yang D; Lee S; Cho KM
    Metab Eng; 2016 May; 35():38-45. PubMed ID: 26384570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.