These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
482 related articles for article (PubMed ID: 30808357)
1. Metabolic engineering of microorganisms for production of aromatic compounds. Huccetogullari D; Luo ZW; Lee SY Microb Cell Fact; 2019 Feb; 18(1):41. PubMed ID: 30808357 [TBL] [Abstract][Full Text] [Related]
2. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. Lee JH; Wendisch VF J Biotechnol; 2017 Sep; 257():211-221. PubMed ID: 27871872 [TBL] [Abstract][Full Text] [Related]
3. Biotechnological production of specialty aromatic and aromatic-derivative compounds. Braga A; Faria N World J Microbiol Biotechnol; 2022 Mar; 38(5):80. PubMed ID: 35338395 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments. Bilal M; Wang S; Iqbal HMN; Zhao Y; Hu H; Wang W; Zhang X Appl Microbiol Biotechnol; 2018 Sep; 102(18):7759-7773. PubMed ID: 30014168 [TBL] [Abstract][Full Text] [Related]
5. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. Gottardi M; Reifenrath M; Boles E; Tripp J FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489 [TBL] [Abstract][Full Text] [Related]
6. [Advances in metabolic engineering for the production of aromatic chemicals]. Wu F; Wang X; Song F; Peng Y; Wang Q Sheng Wu Gong Cheng Xue Bao; 2021 May; 37(5):1771-1793. PubMed ID: 34085454 [TBL] [Abstract][Full Text] [Related]
7. Common problems associated with the microbial productions of aromatic compounds and corresponding metabolic engineering strategies. Li M; Liu C; Yang J; Nian R; Xian M; Li F; Zhang H Biotechnol Adv; 2020; 41():107548. PubMed ID: 32289350 [TBL] [Abstract][Full Text] [Related]
9. Recent advances in microbial production of aromatic natural products and their derivatives. Wang J; Shen X; Rey J; Yuan Q; Yan Y Appl Microbiol Biotechnol; 2018 Jan; 102(1):47-61. PubMed ID: 29127467 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Kogure T; Inui M Appl Microbiol Biotechnol; 2018 Oct; 102(20):8685-8705. PubMed ID: 30109397 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway. Li Z; Wang H; Ding D; Liu Y; Fang H; Chang Z; Chen T; Zhang D J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):525-535. PubMed ID: 32642925 [TBL] [Abstract][Full Text] [Related]
12. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Lee JW; Na D; Park JM; Lee J; Choi S; Lee SY Nat Chem Biol; 2012 May; 8(6):536-46. PubMed ID: 22596205 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993 [TBL] [Abstract][Full Text] [Related]
14. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Effendi SSW; Ng IS Biotechnol Adv; 2023 Dec; 69():108270. PubMed ID: 37852421 [TBL] [Abstract][Full Text] [Related]
15. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Cao M; Gao M; Suástegui M; Mei Y; Shao Z Metab Eng; 2020 Mar; 58():94-132. PubMed ID: 31408706 [TBL] [Abstract][Full Text] [Related]
16. Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Koma D; Yamanaka H; Moriyoshi K; Ohmoto T; Sakai K Appl Environ Microbiol; 2012 Sep; 78(17):6203-16. PubMed ID: 22752168 [TBL] [Abstract][Full Text] [Related]
17. Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae. Li Y; Sun J; Fu Z; He Y; Chen X; Wang S; Zhang L; Jian J; Yang W; Liu C; Liu X; Yang Y; Bai Z Biotechnol Biofuels Bioprod; 2024 Oct; 17(1):130. PubMed ID: 39415302 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering for improving L-tryptophan production in Escherichia coli. Niu H; Li R; Liang Q; Qi Q; Li Q; Gu P J Ind Microbiol Biotechnol; 2019 Jan; 46(1):55-65. PubMed ID: 30426284 [TBL] [Abstract][Full Text] [Related]
19. Microbial conversion of biomass into bio-based polymers. Kawaguchi H; Ogino C; Kondo A Bioresour Technol; 2017 Dec; 245(Pt B):1664-1673. PubMed ID: 28688739 [TBL] [Abstract][Full Text] [Related]
20. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Cho C; Choi SY; Luo ZW; Lee SY Biotechnol Adv; 2015 Nov; 33(7):1455-66. PubMed ID: 25450194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]