BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30808748)

  • 1. Probing initial transient oligomerization events facilitating Huntingtin fibril nucleation at atomic resolution by relaxation-based NMR.
    Kotler SA; Tugarinov V; Schmidt T; Ceccon A; Libich DS; Ghirlando R; Schwieters CD; Clore GM
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3562-3571. PubMed ID: 30808748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abrogation of prenucleation, transient oligomerization of the Huntingtin exon 1 protein by human profilin I.
    Ceccon A; Tugarinov V; Ghirlando R; Clore GM
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5844-5852. PubMed ID: 32127471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Exchange NMR-Based Analysis of Huntingtin-SH3 Interactions Suggests an Allosteric Mechanism of Inhibition of Huntingtin Aggregation.
    Ceccon A; Tugarinov V; Clore GM
    J Am Chem Soc; 2021 Jun; 143(25):9672-9681. PubMed ID: 34137596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative NMR analysis of the kinetics of prenucleation oligomerization and aggregation of pathogenic huntingtin exon-1 protein.
    Ceccon A; Tugarinov V; Torricella F; Clore GM
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2207690119. PubMed ID: 35858329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Targetable Self-association Surface of the Huntingtin exon1 Helical Tetramer Required for Assembly of Amyloid Pre-nucleation Oligomers.
    Mishra R; Gerlach GJ; Sahoo B; Camacho CJ; Wetzel R
    J Mol Biol; 2024 Jun; 436(12):168607. PubMed ID: 38734203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decorrelating Kinetic and Relaxation Parameters in Exchange Saturation Transfer NMR: A Case Study of N-Terminal Huntingtin Peptides Binding to Unilamellar Lipid Vesicles.
    Ceccon A; Clore GM; Tugarinov V
    J Phys Chem B; 2018 Dec; 122(49):11271-11278. PubMed ID: 30156416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and Structure of Wild Type Huntingtin Exon-1 Fibrils.
    Isas JM; Langen A; Isas MC; Pandey NK; Siemer AB
    Biochemistry; 2017 Jul; 56(28):3579-3586. PubMed ID: 28621522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation of Huntingtin Aggregation Proceeds via Conformational Conversion of Pre-Formed, Sparsely-Populated Tetramers.
    Torricella F; Tugarinov V; Clore GM
    Adv Sci (Weinh); 2024 Jun; 11(24):e2309217. PubMed ID: 38476051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core.
    Lin HK; Boatz JC; Krabbendam IE; Kodali R; Hou Z; Wetzel R; Dolga AM; Poirier MA; van der Wel PCA
    Nat Commun; 2017 May; 8():15462. PubMed ID: 28537272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation Inhibition of Huntingtin Protein (htt) by Polyproline PPII Helices: A Potential Interaction with the N-Terminal α-Helical Region of Htt.
    Arndt JR; Chaibva M; Beasley M; Kiani Karanji A; Ghassabi Kondalaji S; Khakinejad M; Sarver O; Legleiter J; Valentine SJ
    Biochemistry; 2020 Feb; 59(4):436-449. PubMed ID: 31814404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments.
    Jayaraman M; Kodali R; Sahoo B; Thakur AK; Mayasundari A; Mishra R; Peterson CB; Wetzel R
    J Mol Biol; 2012 Feb; 415(5):881-99. PubMed ID: 22178474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Huntingtin Exon-1 Peptides with Lipid-Based Micellar Nanoparticles Probed by Solution NMR and Q-Band Pulsed EPR.
    Ceccon A; Schmidt T; Tugarinov V; Kotler SA; Schwieters CD; Clore GM
    J Am Chem Soc; 2018 May; 140(20):6199-6202. PubMed ID: 29727175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
    Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrillogenesis of huntingtin and other glutamine containing proteins.
    Lyubchenko YL; Krasnoslobodtsev AV; Luca S
    Subcell Biochem; 2012; 65():225-51. PubMed ID: 23225006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-State Nuclear Magnetic Resonance on the Static and Dynamic Domains of Huntingtin Exon-1 Fibrils.
    Isas JM; Langen R; Siemer AB
    Biochemistry; 2015 Jun; 54(25):3942-9. PubMed ID: 26020223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of Mutant Huntingtin Exon-1 Fragments into Large Complex Fibrillar Structures Involves Nucleated Branching.
    Wagner AS; Politi AZ; Ast A; Bravo-Rodriguez K; Baum K; Buntru A; Strempel NU; Brusendorf L; Hänig C; Boeddrich A; Plassmann S; Klockmeier K; Ramirez-Anguita JM; Sanchez-Garcia E; Wolf J; Wanker EE
    J Mol Biol; 2018 Jun; 430(12):1725-1744. PubMed ID: 29601786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance.
    Hoop CL; Lin HK; Kar K; Hou Z; Poirier MA; Wetzel R; van der Wel PC
    Biochemistry; 2014 Oct; 53(42):6653-66. PubMed ID: 25280367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR spectroscopy, excited states and relevance to problems in cell biology - transient pre-nucleation tetramerization of huntingtin and insights into Huntington's disease.
    Clore GM
    J Cell Sci; 2022 Jun; 135(12):. PubMed ID: 35703323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of Fast Tetramerization of the Huntingtin Exon 1 Protein Probed by Concentration-Dependent On-Resonance
    Ceccon A; Tugarinov V; Clore GM
    J Phys Chem Lett; 2020 Jul; 11(14):5643-5648. PubMed ID: 32589032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Huntingtin structure is orchestrated by HAP40 and shows a polyglutamine expansion-specific interaction with exon 1.
    Harding RJ; Deme JC; Hevler JF; Tamara S; Lemak A; Cantle JP; Szewczyk MM; Begeja N; Goss S; Zuo X; Loppnau P; Seitova A; Hutchinson A; Fan L; Truant R; Schapira M; Carroll JB; Heck AJR; Lea SM; Arrowsmith CH
    Commun Biol; 2021 Dec; 4(1):1374. PubMed ID: 34880419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.