These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 30808915)
1. Integrative analysis of postharvest chilling injury in cherry tomato fruit reveals contrapuntal spatio-temporal responses to ripening and cold stress. Albornoz K; Cantwell MI; Zhang L; Beckles DM Sci Rep; 2019 Feb; 9(1):2795. PubMed ID: 30808915 [TBL] [Abstract][Full Text] [Related]
2. Ectopic overexpression of Albornoz K; Zhou J; Zakharov F; Grove J; Wang M; Beckles DM Front Plant Sci; 2024; 15():1429321. PubMed ID: 39161954 [TBL] [Abstract][Full Text] [Related]
3. Small heat shock proteins and the postharvest chilling tolerance of tomato fruit. Ré MD; Gonzalez C; Escobar MR; Sossi ML; Valle EM; Boggio SB Physiol Plant; 2017 Feb; 159(2):148-160. PubMed ID: 27545651 [TBL] [Abstract][Full Text] [Related]
4. The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury. Zou Y; Zhang L; Rao S; Zhu X; Ye L; Chen W; Li X PLoS One; 2014; 9(12):e116002. PubMed ID: 25542021 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). Shi X; Jiang F; Wen J; Wu Z BMC Plant Biol; 2019 May; 19(1):214. PubMed ID: 31122194 [TBL] [Abstract][Full Text] [Related]
6. Alleviation of chilling injury in postharvest tomato fruit by preconditioning with ultraviolet irradiation. Liu C; Jahangir MM; Ying T J Sci Food Agric; 2012 Dec; 92(15):3016-22. PubMed ID: 22549412 [TBL] [Abstract][Full Text] [Related]
7. Effect of selenium enrichment on metabolism of tomato (Solanum lycopersicum) fruit during postharvest ripening. Puccinelli M; Malorgio F; Terry LA; Tosetti R; Rosellini I; Pezzarossa B J Sci Food Agric; 2019 Mar; 99(5):2463-2472. PubMed ID: 30367482 [TBL] [Abstract][Full Text] [Related]
8. Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. Page D; Gouble B; Valot B; Bouchet JP; Callot C; Kretzschmar A; Causse M; Renard CM; Faurobert M Planta; 2010 Jul; 232(2):483-500. PubMed ID: 20480178 [TBL] [Abstract][Full Text] [Related]
9. Hot air treatment reduces postharvest decay and delays softening of cherry tomato by regulating gene expression and activities of cell wall-degrading enzymes. Wei Y; Zhou D; Wang Z; Tu S; Shao X; Peng J; Pan L; Tu K J Sci Food Agric; 2018 Apr; 98(6):2105-2112. PubMed ID: 28944957 [TBL] [Abstract][Full Text] [Related]
10. The Solanum melongena COP1 delays fruit ripening and influences ethylene signaling in tomato. Naeem M; Muqarab R; Waseem M J Plant Physiol; 2019 Sep; 240():152997. PubMed ID: 31229781 [TBL] [Abstract][Full Text] [Related]
11. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit. Ding Y; Zhao J; Nie Y; Fan B; Wu S; Zhang Y; Sheng J; Shen L; Zhao R; Tang X J Agric Food Chem; 2016 Nov; 64(43):8200-8206. PubMed ID: 27754653 [TBL] [Abstract][Full Text] [Related]
12. Ripening tomato fruit after chilling storage alters protein turnover. Ré MD; Gonzalez C; Sdrigotti MA; Sorrequieta A; Valle EM; Boggio SB J Sci Food Agric; 2012 May; 92(7):1490-6. PubMed ID: 22162046 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic analysis in tomato fruit reveals divergences in genes involved in cold stress response and fruit ripening. Mitalo OW; Kang SW; Tran LT; Kubo Y; Ariizumi T; Ezura H Front Plant Sci; 2023; 14():1227349. PubMed ID: 37575935 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome Responses of Ripe Cherry Tomato Fruit Exposed to Chilling and Rewarming Identify Reversible and Irreversible Gene Expression Changes. Hunter DA; Napier NJ; Erridge ZA; Saei A; Chen RKY; McKenzie MJ; O'Donoghue EM; Hunt M; Favre L; Lill RE; Brummell DA Front Plant Sci; 2021; 12():685416. PubMed ID: 34335654 [TBL] [Abstract][Full Text] [Related]
15. Integrative analysis of the methylome and transcriptome of tomato fruit ( Zhou J; Zhou S; Chen B; Sangsoy K; Luengwilai K; Albornoz K; Beckles DM Hortic Res; 2024 Jun; 11(6):uhae095. PubMed ID: 38840937 [TBL] [Abstract][Full Text] [Related]
16. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Nakatsuka A; Murachi S; Okunishi H; Shiomi S; Nakano R; Kubo Y; Inaba A Plant Physiol; 1998 Dec; 118(4):1295-305. PubMed ID: 9847103 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of Guo T; Zhang X; Li Y; Liu C; Wang N; Jiang Q; Wu J; Ma F; Liu C Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32867065 [TBL] [Abstract][Full Text] [Related]
18. Physiological genetic variation in tomato fruit chilling tolerance during postharvest storage. David S; Levin E; Fallik E; Alkalai-Tuvia S; Foolad MR; Lers A Front Plant Sci; 2022; 13():991983. PubMed ID: 36160961 [TBL] [Abstract][Full Text] [Related]
19. Expression of arabinogalactan proteins during tomato fruit ripening and in response to mechanical wounding, hypoxia and anoxia. Fragkostefanakis S; Dandachi F; Kalaitzis P Plant Physiol Biochem; 2012 Mar; 52():112-8. PubMed ID: 22305074 [TBL] [Abstract][Full Text] [Related]
20. Chlorogenic Acid as a Promising Tool for Mitigating Chilling Injury: Cold Tolerance and the Ripening Effect on Tomato Fruit ( Ilea MIM; Zapata PJ; Fernández-Picazo C; Díaz-Mula HM; Castillo S; Guillén F Plants (Basel); 2024 Jul; 13(15):. PubMed ID: 39124173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]