These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30808970)

  • 41. Statics and dynamics of single DNA molecules confined in nanochannels.
    Reisner W; Morton KJ; Riehn R; Wang YM; Yu Z; Rosen M; Sturm JC; Chou SY; Frey E; Austin RH
    Phys Rev Lett; 2005 May; 94(19):196101. PubMed ID: 16090189
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Self-assembled magnetic matrices for DNA separation chips.
    Doyle PS; Bibette J; Bancaud A; Viovy JL
    Science; 2002 Mar; 295(5563):2237. PubMed ID: 11910102
    [No Abstract]   [Full Text] [Related]  

  • 43. A systematic study of field inversion gel electrophoresis.
    Heller C; Pohl FM
    Nucleic Acids Res; 1989 Aug; 17(15):5989-6003. PubMed ID: 2528121
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp.
    Angeli E; Manneschi C; Repetto L; Firpo G; Valbusa U
    Lab Chip; 2011 Aug; 11(15):2625-9. PubMed ID: 21677946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A single-molecule barcoding system using nanoslits for DNA analysis : nanocoding.
    Jo K; Schramm TM; Schwartz DC
    Methods Mol Biol; 2009; 544():29-42. PubMed ID: 19488691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New techniques for purifying large DNAs and studying their properties and packaging.
    Schwartz DC; Saffran W; Welsh J; Haas R; Goldenberg M; Cantor CR
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():189-95. PubMed ID: 6222863
    [No Abstract]   [Full Text] [Related]  

  • 47. Directly Accessible and Transferrable Nanofluidic Systems for Biomolecule Manipulation.
    Kim YS; Dincau BM; Kwon YT; Kim JH; Yeo WH
    ACS Sens; 2019 May; 4(5):1417-1423. PubMed ID: 31062586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 2. Effect of pulse time and electric field strength and implications for models of the separation process.
    Mathew MK; Smith CL; Cantor CR
    Biochemistry; 1988 Dec; 27(26):9210-6. PubMed ID: 3242624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level.
    Öz R; Kk S; Westerlund F
    Nanoscale; 2019 Jan; 11(4):2071-2078. PubMed ID: 30644945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequence-induced DNA curvature at the bacteriophage lambda origin of replication.
    Zahn K; Blattner FR
    Nature; 1985 Oct 3-9; 317(6036):451-3. PubMed ID: 2995831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Smooth and conductive DNA-templated Cu₂O nanowires: growth morphology, spectroscopic and electrical characterization.
    Hassanien R; Al-Said SA; Siller L; Little R; Wright NG; Houlton A; Horrocks BR
    Nanotechnology; 2012 Feb; 23(7):075601. PubMed ID: 22261265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-molecule DNA digestion by lambda-exonuclease.
    Dapprich J
    Cytometry; 1999 Jul; 36(3):163-8. PubMed ID: 10404963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrical Field Regulation of Ion Transport in Polyethylene Terephthalate Nanochannels.
    Li Y; Du G; Mao G; Guo J; Zhao J; Wu R; Liu W
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38055-38060. PubMed ID: 31553570
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-Molecule Counting of Nucleotide by Electrophoresis with Nanochannel-Integrated Nano-Gap Devices.
    Ohshiro T; Komoto Y; Taniguchi M
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33142705
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Field inversion gel electrophoresis applied to the rapid, multi-enzyme restriction mapping of phage lambda clones.
    Daniels DL; Olson CH; Brumley R; Blattner FR
    Nucleic Acids Res; 1990 Mar; 18(5):1312. PubMed ID: 2138731
    [No Abstract]   [Full Text] [Related]  

  • 56. Construction and analysis of recombinant lambda phages containing mitochondrial DNA fragments.
    Kobayashi M; Koike K
    Gene; 1979 Jun; 6(2):123-36. PubMed ID: 157910
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Miniaturized ultrathin slab gel electrophoresis with thermal lens microscope detection and its application to fast genetic diagnosis.
    Zheng J; Odake T; Kitamori T; Sawada T
    Anal Chem; 1999 Nov; 71(21):5003-8. PubMed ID: 10565289
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cleavage of DNA by N-phosphoryl histidine.
    Li Y; Sha YW; Ma Y; Zhao Y
    Biochem Biophys Res Commun; 1995 Aug; 213(3):875-80. PubMed ID: 7654250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enabling electrical biomolecular detection in high ionic concentrations and enhancement of the detection limit thereof by coupling a nanofluidic crystal with reconfigurable ion concentration polarization.
    Ouyang W; Han J; Wang W
    Lab Chip; 2017 Nov; 17(22):3772-3784. PubMed ID: 28983543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Lambda plasmidophages and their properties].
    Mel'nikov AA; Chernov AP; Fodor II
    Mol Biol (Mosk); 1985; 19(3):610-6. PubMed ID: 2993852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.