These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 30808979)
1. Glyoxylate cycle gene ICL1 is essential for the metabolic flexibility and virulence of Candida glabrata. Chew SY; Ho KL; Cheah YK; Ng TS; Sandai D; Brown AJP; Than LTL Sci Rep; 2019 Feb; 9(1):2843. PubMed ID: 30808979 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic and proteomic profiling revealed reprogramming of carbon metabolism in acetate-grown human pathogen Candida glabrata. Chew SY; Brown AJP; Lau BYC; Cheah YK; Ho KL; Sandai D; Yahaya H; Than LTL J Biomed Sci; 2021 Jan; 28(1):1. PubMed ID: 33388061 [TBL] [Abstract][Full Text] [Related]
3. The activity of the glyoxylate cycle in peroxisomes of Candida albicans depends on a functional beta-oxidation pathway: evidence for reduced metabolite transport across the peroxisomal membrane. Piekarska K; Hardy G; Mol E; van den Burg J; Strijbis K; van Roermund C; van den Berg M; Distel B Microbiology (Reading); 2008 Oct; 154(Pt 10):3061-3072. PubMed ID: 18832312 [TBL] [Abstract][Full Text] [Related]
4. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. Chew SY; Chee WJY; Than LTL J Biomed Sci; 2019 Jul; 26(1):52. PubMed ID: 31301737 [TBL] [Abstract][Full Text] [Related]
5. Decoding the role of oxidative stress resistance and alternative carbon substrate assimilation in the mature biofilm growth mode of Candida glabrata. Raj K; Paul D; Rishi P; Shukla G; Dhotre D; YogeshSouche BMC Microbiol; 2024 Apr; 24(1):128. PubMed ID: 38641593 [TBL] [Abstract][Full Text] [Related]
6. Metabolic adaptation via regulated enzyme degradation in the pathogenic yeast Candida albicans. Ting SY; Ishola OA; Ahmed MA; Tabana YM; Dahham S; Agha MT; Musa SF; Muhammed R; Than LT; Sandai D J Mycol Med; 2017 Mar; 27(1):98-108. PubMed ID: 28041812 [TBL] [Abstract][Full Text] [Related]
8. One small step for a yeast--microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation. Brunke S; Seider K; Fischer D; Jacobsen ID; Kasper L; Jablonowski N; Wartenberg A; Bader O; Enache-Angoulvant A; Schaller M; d'Enfert C; Hube B PLoS Pathog; 2014 Oct; 10(10):e1004478. PubMed ID: 25356907 [TBL] [Abstract][Full Text] [Related]
10. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. Kasper L; Seider K; Hube B FEMS Yeast Res; 2015 Aug; 15(5):fov042. PubMed ID: 26066553 [TBL] [Abstract][Full Text] [Related]
11. Physiologically Relevant Alternative Carbon Sources Modulate Biofilm Formation, Cell Wall Architecture, and the Stress and Antifungal Resistance of Chew SY; Ho KL; Cheah YK; Sandai D; Brown AJP; Than LTL Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261727 [TBL] [Abstract][Full Text] [Related]
12. Aspartyl proteases in Rasheed M; Battu A; Kaur R J Biol Chem; 2018 Apr; 293(17):6410-6433. PubMed ID: 29491142 [TBL] [Abstract][Full Text] [Related]
13. The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata. Srivastava VK; Suneetha KJ; Kaur R FEBS J; 2015 Jun; 282(11):2142-66. PubMed ID: 25772226 [TBL] [Abstract][Full Text] [Related]
14. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090 [TBL] [Abstract][Full Text] [Related]
15. Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Jacobsen ID; Brunke S; Seider K; Schwarzmüller T; Firon A; d'Enfért C; Kuchler K; Hube B Infect Immun; 2010 Mar; 78(3):1066-77. PubMed ID: 20008535 [TBL] [Abstract][Full Text] [Related]
16. Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. Rai MN; Balusu S; Gorityala N; Dandu L; Kaur R PLoS Pathog; 2012; 8(8):e1002863. PubMed ID: 22916016 [TBL] [Abstract][Full Text] [Related]
17. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages. Seider K; Gerwien F; Kasper L; Allert S; Brunke S; Jablonowski N; Schwarzmüller T; Barz D; Rupp S; Kuchler K; Hube B Eukaryot Cell; 2014 Jan; 13(1):170-83. PubMed ID: 24363366 [TBL] [Abstract][Full Text] [Related]
18. Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence. Kamran M; Calcagno AM; Findon H; Bignell E; Jones MD; Warn P; Hopkins P; Denning DW; Butler G; Rogers T; Mühlschlegel FA; Haynes K Eukaryot Cell; 2004 Apr; 3(2):546-52. PubMed ID: 15075283 [TBL] [Abstract][Full Text] [Related]
19. The glyoxylate cycle is required for fungal virulence. Lorenz MC; Fink GR Nature; 2001 Jul; 412(6842):83-6. PubMed ID: 11452311 [TBL] [Abstract][Full Text] [Related]
20. Role of CgTpo4 in Polyamine and Antimicrobial Peptide Resistance: Determining Virulence in Cavalheiro M; Romão D; Santos R; Mil-Homens D; Pais P; Costa C; Galocha M; Pereira D; Takahashi-Nakaguchi A; Chibana H; Fialho AM; Teixeira MC Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33573089 [No Abstract] [Full Text] [Related] [Next] [New Search]