BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30809617)

  • 1. Selectively grown GaN nanowalls and nanogrids for photocatalysis: growth and optical properties.
    Winnerl J; Kraut M; Artmeier S; Stutzmann M
    Nanoscale; 2019 Mar; 11(10):4578-4584. PubMed ID: 30809617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation Density Dependent Photoluminescence Studies on Homo-Epitaxial GaN Nanowall Networks Grown by Laser Assisted Molecular Beam Epitaxy.
    Ramesh C; Pandey J; Tyagi P; Soni A; Senthil Kumar M; Kushvaha SS
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3866-3872. PubMed ID: 31748088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy.
    Zhong A; Hane K
    Nanoscale Res Lett; 2012 Dec; 7(1):686. PubMed ID: 23270331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Optical Properties of Self-Assembled Epitaxially Grown GaN Nanorods and Nanoporous Film on Sapphire (0001) Using Laser Molecular Beam Epitaxy.
    Ramesh C; Tyagi P; Senthil Kumar M; Kushvaha SS
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3839-3844. PubMed ID: 31748084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of ZnO nanowall structures grown on GaN template using organometallic chemical vapor deposition.
    Wu CC; Wuu DS; Chen TN; Yu TE; Lin PR; Horng RH; Sun S
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3851-6. PubMed ID: 19049140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Anisotropy and Optical Properties of Nonpolar a-Plane GaN Epitaxial Layers.
    Seo YG; Shin SH; Kim DS; Yoon HD; Hwang SM; Baik KH
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7787-90. PubMed ID: 26726413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.
    Zhao G; Wang L; Yang S; Li H; Wei H; Han D; Wang Z
    Sci Rep; 2016 Feb; 6():20787. PubMed ID: 26861595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical properties of ZnMgO nanowalls grown by plasma-assisted molecular beam epitaxy.
    Su SC; Lu YM; Zhang ZZ; Shan CX; Li BH; Shen DZ; Yao B; Zhang JY; Zhao DX; Fan XW
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1681-4. PubMed ID: 20355557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable network electrical devices using ZnO nanowalls.
    Lee CH; Kim YJ; Lee J; Hong YJ; Jeon JM; Kim M; Hong S; Yi GC
    Nanotechnology; 2011 Feb; 22(5):055205. PubMed ID: 21178253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralong and defect-free GaN nanowires grown by the HVPE process.
    Avit G; Lekhal K; André Y; Bougerol C; Réveret F; Leymarie J; Gil E; Monier G; Castelluci D; Trassoudaine A
    Nano Lett; 2014 Feb; 14(2):559-62. PubMed ID: 24393103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of growth temperature with stress, defect states and electronic structure in an epitaxial GaN film grown on c-sapphire via plasma MBE.
    Krishna S; Aggarwal N; Mishra M; Maurya KK; Singh S; Dilawar N; Nagarajan S; Gupta G
    Phys Chem Chem Phys; 2016 Mar; 18(11):8005-14. PubMed ID: 26916430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-morphology induced additional surface plasmon resonance enhancement of SERS sensitivity in Ag/GaN nanowall network.
    Sharvani S; Upadhayaya K; Kumari G; Narayana C; Shivaprasad SM
    Nanotechnology; 2015 Nov; 26(46):465701. PubMed ID: 26502004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Induced Growth of GaN Nanowall Structure on Si (111) by Laser Molecular Beam Epitaxy.
    Tyagi P; Ramesh C; Kushvaha SS; Gupta G; Senthil Kumar M
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3919-3924. PubMed ID: 31748096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic states of deep trap levels in a-plane GaN templates grown on r-plane sapphire by HVPE.
    Lee M; Vu TKO; Lee KS; Kim EK; Park S
    Sci Rep; 2018 May; 8(1):7814. PubMed ID: 29777185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AlN Nanowall Structures Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Tamura Y; Hane K
    Nanoscale Res Lett; 2015 Dec; 10(1):460. PubMed ID: 26625884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical GaN nanocolumns grown on graphene intermediated with a thin AlN buffer layer.
    Liudi Mulyo A; Rajpalke MK; Kuroe H; Vullum PE; Weman H; Fimland BO; Kishino K
    Nanotechnology; 2019 Jan; 30(1):015604. PubMed ID: 30375368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong Size Dependency on the Carrier and Photon Dynamics in InGaN/GaN Single Nanowalls Determined Using Photoluminescence and Ultrafast Transient Absorption Spectroscopy.
    Chouksey S; Sankaranarayanan S; Pendem V; Saha PK; Ganguly S; Saha D
    Nano Lett; 2017 Aug; 17(8):4596-4603. PubMed ID: 28735539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the red-shift of a neutral donor bound exciton in GaN nanorods by hydrogenation.
    Park BG; Lee ST; Reddeppa M; Kim MD; Oh JE; Lee SK
    Nanotechnology; 2017 Sep; 28(36):365702. PubMed ID: 28786400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective area growth of AlN/GaN nanocolumns on (0001) and (11-22) GaN/sapphire for semi-polar and non-polar AlN pseudo-templates.
    Bengoechea-Encabo A; Albert S; Müller M; Xie MY; Veit P; Bertram F; Sanchez-Garcia MA; Zúñiga-Pérez J; de Mierry P; Christen J; Calleja E
    Nanotechnology; 2017 Sep; 28(36):365704. PubMed ID: 28604369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of strain relaxation in InGaN/GaN nanowalls from quantum confinement and exciton binding energy dependent photoluminescence peak.
    Sankaranarayanan S; Chouksey S; Saha P; Pendem V; Udai A; Aggarwal T; Ganguly S; Saha D
    Sci Rep; 2018 May; 8(1):8404. PubMed ID: 29849038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.