BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30809786)

  • 1. Characterization of Two Polyketide Synthases Involved in Sorbicillinoid Biosynthesis by Acremonium chrysogenum Using the CRISPR/Cas9 System.
    Chen G; Chu J
    Appl Biochem Biotechnol; 2019 Aug; 188(4):1134-1144. PubMed ID: 30809786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of the CRISPR-Cas9 mediated gene disruption and large DNA fragment deletion based on a chimeric promoter in Acremonium chrysogenum.
    Chen C; Liu J; Duan C; Pan Y; Liu G
    Fungal Genet Biol; 2020 Jan; 134():103279. PubMed ID: 31622672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation.
    Huang WP; Du YJ; Yang Y; He JN; Lei Q; Yang XY; Zhang KQ; Niu XM
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769197
    [No Abstract]   [Full Text] [Related]  

  • 4. Knockout and functional analysis of BSSS-related genes in Acremonium chrysogenum by novel episomal expression vector containing Cas9 and AMA1.
    Liu L; Chen Z; Tian X; Chu J
    Biotechnol Lett; 2022 Jun; 44(5-6):755-766. PubMed ID: 35526203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a Polyketide Synthase Involved in Sorbicillin Biosynthesis by Penicillium chrysogenum.
    Salo O; Guzmán-Chávez F; Ries MI; Lankhorst PP; Bovenberg RAL; Vreeken RJ; Driessen AJM
    Appl Environ Microbiol; 2016 Jul; 82(13):3971-3978. PubMed ID: 27107123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Editing in Penicillium chrysogenum Using Cas9 Ribonucleoprotein Particles.
    Pohl C; Mózsik L; Driessen AJM; Bovenberg RAL; Nygård YI
    Methods Mol Biol; 2018; 1772():213-232. PubMed ID: 29754231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.
    Pohl C; Kiel JA; Driessen AJ; Bovenberg RA; Nygård Y
    ACS Synth Biol; 2016 Jul; 5(7):754-64. PubMed ID: 27072635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system.
    Deng H; Gao R; Liao X; Cai Y
    J Biotechnol; 2017 Oct; 259():228-234. PubMed ID: 28690135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Several steps of lateral gene transfer followed by events of 'birth-and-death' evolution shaped a fungal sorbicillinoid biosynthetic gene cluster.
    Druzhinina IS; Kubicek EM; Kubicek CP
    BMC Evol Biol; 2016 Dec; 16(1):269. PubMed ID: 28010735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum.
    Guzmán-Chávez F; Salo O; Nygård Y; Lankhorst PP; Bovenberg RAL; Driessen AJM
    Microb Biotechnol; 2017 Jul; 10(4):958-968. PubMed ID: 28618182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The arthrospore-related gene Acaxl2 is involved in cephalosporin C production in industrial Acremonium chrysogenum by the regulatory factors AcFKH1 and CPCR1.
    Xu Y; Liu L; Chen Z; Tian X; Chu J
    J Biotechnol; 2022 Mar; 347():26-39. PubMed ID: 34954288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum.
    Ferrara M; Haidukowski M; Logrieco AF; Leslie JF; Mulè G
    Sci Rep; 2019 Dec; 9(1):19836. PubMed ID: 31882627
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Derntl C; Guzmán-Chávez F; Mello-de-Sousa TM; Busse HJ; Driessen AJM; Mach RL; Mach-Aigner AR
    Front Microbiol; 2017; 8():2037. PubMed ID: 29104566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 Delivery by Artificial Virus (RRPHC).
    Yang S; Wu Q; Wei Y; Gong C
    Methods Mol Biol; 2019; 1961():81-91. PubMed ID: 30912041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic investigation of CRISPR-Cas9 configurations for flexible and efficient genome editing in Corynebacterium glutamicum NRRL-B11474.
    Cameron Coates R; Blaskowski S; Szyjka S; van Rossum HM; Vallandingham J; Patel K; Serber Z; Dean J
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):187-201. PubMed ID: 30484125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing.
    Zhou C; Liu H; Yuan F; Chai H; Wang H; Liu F; Li Y; Zhang H; Lu F
    Int J Biol Macromol; 2019 Feb; 122():329-337. PubMed ID: 30401651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorbicillinoid Derivatives with the Radical Scavenging Activities from the Marine-Derived Fungus
    Duan C; Wang S; Huo R; Li E; Wang M; Ren J; Pan Y; Liu L; Liu G
    J Fungi (Basel); 2022 May; 8(5):. PubMed ID: 35628785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-Mediated Genome Editing of Trichoderma reesei.
    Zou G; Zhou Z
    Methods Mol Biol; 2021; 2234():87-98. PubMed ID: 33165782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.