These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 30809787)
1. Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Deliormanlı AM Appl Biochem Biotechnol; 2019 Aug; 188(4):1117-1133. PubMed ID: 30809787 [TBL] [Abstract][Full Text] [Related]
2. Response of mouse bone marrow mesenchymal stem cells to graphene-containing grid-like bioactive glass scaffolds produced by robocasting. Deliormanlı AM; Türk M; Atmaca H J Biomater Appl; 2018 Oct; 33(4):488-500. PubMed ID: 30249149 [TBL] [Abstract][Full Text] [Related]
3. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029 [TBL] [Abstract][Full Text] [Related]
4. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642 [TBL] [Abstract][Full Text] [Related]
5. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration. Li J; Yao Q; Xu Y; Zhang H; Li LL; Wang L Med Sci Monit; 2019 May; 25():4041-4050. PubMed ID: 31147532 [TBL] [Abstract][Full Text] [Related]
6. Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. Moura CS; Silva JC; Faria S; Fernandes PR; da Silva CL; Cabral JMS; Linhardt R; Bártolo PJ; Ferreira FC J Biosci Bioeng; 2020 Jun; 129(6):756-764. PubMed ID: 32107152 [TBL] [Abstract][Full Text] [Related]
7. Effect of polycaprolactone scaffolds containing different weights of graphene on healing in large osteochondral defect model. Basal O; Ozmen O; Deliormanli AM J Biomater Sci Polym Ed; 2022 Jun; 33(9):1123-1139. PubMed ID: 35171753 [TBL] [Abstract][Full Text] [Related]
8. Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. Wang W; Junior JRP; Nalesso PRL; Musson D; Cornish J; Mendonça F; Caetano GF; Bártolo P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():759-770. PubMed ID: 30948113 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152 [TBL] [Abstract][Full Text] [Related]
10. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Ramazani S; Karimi M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():325-34. PubMed ID: 26249597 [TBL] [Abstract][Full Text] [Related]
11. Biological Response of Osteoblastic and Chondrogenic Cells to Graphene-Containing PCL/Bioactive Glass Bilayered Scaffolds for Osteochondral Tissue Engineering Applications. Deliormanlı AM; Atmaca H Appl Biochem Biotechnol; 2018 Dec; 186(4):972-989. PubMed ID: 29797300 [TBL] [Abstract][Full Text] [Related]
12. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Chen CH; Shyu VB; Chen JP; Lee MY Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581 [TBL] [Abstract][Full Text] [Related]
13. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
14. Electroactive graphene composite scaffolds for cardiac tissue engineering. Hitscherich P; Aphale A; Gordan R; Whitaker R; Singh P; Xie LH; Patra P; Lee EJ J Biomed Mater Res A; 2018 Nov; 106(11):2923-2933. PubMed ID: 30325093 [TBL] [Abstract][Full Text] [Related]
15. Chondrogenesis using mesenchymal stem cells and PCL scaffolds. Kim HJ; Lee JH; Im GI J Biomed Mater Res A; 2010 Feb; 92(2):659-66. PubMed ID: 19235210 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834 [TBL] [Abstract][Full Text] [Related]
17. The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds. Gloria A; Frydman B; Lamas ML; Serra AC; Martorelli M; Coelho JFJ; Fonseca AC; Domingos M Mater Sci Eng C Mater Biol Appl; 2019 May; 98():994-1004. PubMed ID: 30813106 [TBL] [Abstract][Full Text] [Related]
18. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds. Mohan N; Nair PD; Tabata Y J Biomed Mater Res A; 2010 Jul; 94(1):146-59. PubMed ID: 20128001 [TBL] [Abstract][Full Text] [Related]
19. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Brunelle AR; Horner CB; Low K; Ico G; Nam J Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering. Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]