These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 30809787)
21. Robotic dispensing of composite scaffolds and in vitro responses of bone marrow stromal cells. Hong SJ; Jeong I; Noh KT; Yu HS; Lee GS; Kim HW J Mater Sci Mater Med; 2009 Sep; 20(9):1955-62. PubMed ID: 19365613 [TBL] [Abstract][Full Text] [Related]
22. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
23. Poly(ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Crowder SW; Liang Y; Rath R; Park AM; Maltais S; Pintauro PN; Hofmeister W; Lim CC; Wang X; Sung HJ Nanomedicine (Lond); 2013 Nov; 8(11):1763-76. PubMed ID: 23530764 [TBL] [Abstract][Full Text] [Related]
24. Osteoinductive potential of graphene and graphene oxide for bone tissue engineering: a comparative study. Kashte SB; Kadam S; Maffulli N; Potty AG; Migliorini F; Gupta A J Orthop Surg Res; 2024 Aug; 19(1):527. PubMed ID: 39215309 [TBL] [Abstract][Full Text] [Related]
25. Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells. V S S; P V M Colloids Surf B Biointerfaces; 2018 Mar; 163():107-118. PubMed ID: 29287231 [TBL] [Abstract][Full Text] [Related]
26. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
27. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Bean AC; Tuan RS Biomed Mater; 2015 Jan; 10(1):015018. PubMed ID: 25634427 [TBL] [Abstract][Full Text] [Related]
28. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746 [TBL] [Abstract][Full Text] [Related]
30. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation. Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490 [TBL] [Abstract][Full Text] [Related]
31. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480 [TBL] [Abstract][Full Text] [Related]
32. Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering. Dalgic AD; Alshemary AZ; Tezcaner A; Keskin D; Evis Z J Biomater Appl; 2018 May; 32(10):1392-1405. PubMed ID: 29544381 [TBL] [Abstract][Full Text] [Related]
33. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729 [TBL] [Abstract][Full Text] [Related]
34. 3D-printed cryomilled poly(ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration. Dias D; Vale AC; Cunha EPF; C Paiva M; Reis RL; Vaquette C; Alves NM J Biomed Mater Res B Appl Biomater; 2021 Jul; 109(7):961-972. PubMed ID: 33241654 [TBL] [Abstract][Full Text] [Related]
35. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
36. Zein Increases the Cytoaffinity and Biodegradability of Scaffolds 3D-Printed with Zein and Poly(ε-caprolactone) Composite Ink. Jing L; Wang X; Liu H; Lu Y; Bian J; Sun J; Huang D ACS Appl Mater Interfaces; 2018 Jun; 10(22):18551-18559. PubMed ID: 29763548 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. Yin H; Wang J; Gu Z; Feng W; Gao M; Wu Y; Zheng H; He X; Mo X J Biomater Appl; 2017 Sep; 32(3):331-341. PubMed ID: 28658997 [TBL] [Abstract][Full Text] [Related]
38. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold. Fu S; Ni P; Wang B; Chu B; Peng J; Zheng L; Zhao X; Luo F; Wei Y; Qian Z Biomaterials; 2012 Nov; 33(33):8363-71. PubMed ID: 22921926 [TBL] [Abstract][Full Text] [Related]
39. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. Shafiee A; Soleimani M; Chamheidari GA; Seyedjafari E; Dodel M; Atashi A; Gheisari Y J Biomed Mater Res A; 2011 Dec; 99(3):467-78. PubMed ID: 21887742 [TBL] [Abstract][Full Text] [Related]
40. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Neves SC; Moreira Teixeira LS; Moroni L; Reis RL; Van Blitterswijk CA; Alves NM; Karperien M; Mano JF Biomaterials; 2011 Feb; 32(4):1068-79. PubMed ID: 20980050 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]