These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30809849)

  • 1. Exponential Molecular Amplification by H
    Pallu J; Rabin C; Creste G; Branca M; Mavré F; Limoges B
    Chemistry; 2019 Jun; 25(31):7534-7546. PubMed ID: 30809849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exponential amplification by redox cross-catalysis and unmasking of doubly protected molecular probes.
    Pallu J; Rabin C; Hui P; Moreira TS; Creste G; Calvet C; Limoges B; Mavré F; Branca M
    Chem Sci; 2022 Mar; 13(9):2764-2777. PubMed ID: 35356676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific Versus Non-specific Response in Exponential Molecular Amplification from Cross-Catalysis: Modeling the Influence of Background Amplifications on the Analytical Performances.
    Branca M; Calvet C; Limoges B; Mavré F
    Chemphyschem; 2021 Aug; 22(15):1611-1621. PubMed ID: 34038617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of naphthohydroquinone autoxidation by DT-diaphorase (NAD(P)H:[quinone acceptor] oxidoreductase).
    Munday R
    Redox Rep; 1997 Jun; 3(3):189-96. PubMed ID: 27406966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An autocatalytic organic reaction network based on cross-catalysis.
    Hui P; Branca M; Limoges B; Mavré F
    Chem Commun (Camb); 2021 Oct; 57(86):11374-11377. PubMed ID: 34647564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exponential Amplification Using Photoredox Autocatalysis.
    Kim S; Martínez Dibildox A; Aguirre-Soto A; Sikes HD
    J Am Chem Soc; 2021 Aug; 143(30):11544-11553. PubMed ID: 34288684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria.
    Leng X; Wang Y; Li R; Liu S; Yao J; Pei Q; Cui X; Tu Y; Tang D; Huang J
    Mikrochim Acta; 2018 Feb; 185(3):168. PubMed ID: 29594727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoechiometric and dynamical autocatalysis for diluted chemical reaction networks.
    Unterberger J; Nghe P
    J Math Biol; 2022 Sep; 85(3):26. PubMed ID: 36071258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.
    Liu L; Xia N; Liu H; Kang X; Liu X; Xue C; He X
    Biosens Bioelectron; 2014 Mar; 53():399-405. PubMed ID: 24201003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dual-Response Fluorescent Probe Reveals the H2 O2 -Induced H2 S Biogenesis through a Cystathionine β-Synthase Pathway.
    Yi L; Wei L; Wang R; Zhang C; Zhang J; Tan T; Xi Z
    Chemistry; 2015 Oct; 21(43):15167-72. PubMed ID: 26337042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
    Wolfrum B; Kätelhön E; Yakushenko A; Krause KJ; Adly N; Hüske M; Rinklin P
    Acc Chem Res; 2016 Sep; 49(9):2031-40. PubMed ID: 27602780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-.
    Abe R; Sayama K; Sugihara H
    J Phys Chem B; 2005 Aug; 109(33):16052-61. PubMed ID: 16853039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical Analysis of a Prototypical Autocatalytic Reaction Network.
    Skorb EV; Semenov SN
    Life (Basel); 2019 May; 9(2):. PubMed ID: 31137534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes.
    Park S; Singh A; Kim S; Yang H
    Anal Chem; 2014 Feb; 86(3):1560-6. PubMed ID: 24428396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.
    Nishida Y; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2014 Jun; 136(22):8042-9. PubMed ID: 24809677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical-chemical-chemical redox cycling for the detection of E. coli O157:H7.
    Akanda MR; Tamilavan V; Park S; Jo K; Hyun MH; Yang H
    Anal Chem; 2013 Feb; 85(3):1631-6. PubMed ID: 23327094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primordial evolvability: Impasses and challenges.
    Vasas V; Fernando C; Szilágyi A; Zachár I; Santos M; Szathmáry E
    J Theor Biol; 2015 Sep; 381():29-38. PubMed ID: 26165453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic rotating droplet electrochemistry: a simple and versatile method for reaction progress kinetic analysis in microliter volumes.
    Challier L; Miranda-Castro R; Marchal D; Noël V; Mavré F; Limoges B
    J Am Chem Soc; 2013 Sep; 135(38):14215-28. PubMed ID: 23985016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepwise chemical reaction strategy for highly sensitive electrochemiluminescent detection of dopamine.
    Zhang L; Cheng Y; Lei J; Liu Y; Hao Q; Ju H
    Anal Chem; 2013 Aug; 85(16):8001-7. PubMed ID: 23931569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.