BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30810036)

  • 1. RNA Strand Displacement Responsive CRISPR/Cas9 System for mRNA Sensing.
    Li Y; Teng X; Zhang K; Deng R; Li J
    Anal Chem; 2019 Mar; 91(6):3989-3996. PubMed ID: 30810036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement.
    Hao Y; Li J; Li Q; Zhang L; Shi J; Zhang X; Aldalbahi A; Wang L; Fan C; Wang F
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20612-20618. PubMed ID: 32744433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable CRISPR-Cas Repression, Activation, and Computation with Sequence-Independent Targets and Triggers.
    Jin M; Garreau de Loubresse N; Kim Y; Kim J; Yin P
    ACS Synth Biol; 2019 Jul; 8(7):1583-1589. PubMed ID: 31290648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable RNA recognition and cleavage by CRISPR/Cas9.
    O'Connell MR; Oakes BL; Sternberg SH; East-Seletsky A; Kaplan M; Doudna JA
    Nature; 2014 Dec; 516(7530):263-6. PubMed ID: 25274302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activatable CRISPR Transcriptional Circuits Generate Functional RNA for mRNA Sensing and Silencing.
    Ying ZM; Wang F; Chu X; Yu RQ; Jiang JH
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18599-18604. PubMed ID: 32633466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing.
    Malina A; Cameron CJF; Robert F; Blanchette M; Dostie J; Pelletier J
    Nat Commun; 2015 Dec; 6():10124. PubMed ID: 26644285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors.
    Liu Y; Pinto F; Wan X; Yang Z; Peng S; Li M; Cooper JM; Xie Z; French CE; Wang B
    Nat Commun; 2022 Apr; 13(1):1937. PubMed ID: 35410423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of CRISPR/Cas9-Mediated Genome Engineering by a Type I Interferon-Induced Reduction in Guide RNA Expression.
    Machitani M; Sakurai F; Wakabayashi K; Nakatani K; Takayama K; Tachibana M; Mizuguchi H
    Biol Pharm Bull; 2017; 40(3):272-277. PubMed ID: 28250269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Engineered CRISPR-Cas-Mediated Systems for Site-Specific RNA Editing.
    Marina RJ; Brannan KW; Dong KD; Yee BA; Yeo GW
    Cell Rep; 2020 Nov; 33(5):108350. PubMed ID: 33147453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
    Peng Y; Yang T; Tang X; Chen F; Wang S
    Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha.
    Sugano SS; Nishihama R
    Methods Mol Biol; 2018; 1830():109-126. PubMed ID: 30043367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of HPV Pseudotype Virus in Cutting E6 Gene Selectively in SiHa Cells.
    Cheng YX; Chen GT; Yang X; Wang YQ; Hong L
    Curr Med Sci; 2018 Apr; 38(2):212-221. PubMed ID: 30074178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch.
    Hirosawa M; Fujita Y; Parr CJC; Hayashi K; Kashida S; Hotta A; Woltjen K; Saito H
    Nucleic Acids Res; 2017 Jul; 45(13):e118. PubMed ID: 28525578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism.
    Arakawa H
    Sci Adv; 2016 Aug; 2(8):e1600699. PubMed ID: 27574704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosstalk between CRISPR-Cas9 and the human transcriptome.
    Smargon AA; Madrigal AA; Yee BA; Dong KD; Mueller JR; Yeo GW
    Nat Commun; 2022 Mar; 13(1):1125. PubMed ID: 35236841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cas9 deactivation with photocleavable guide RNAs.
    Zou RS; Liu Y; Wu B; Ha T
    Mol Cell; 2021 Apr; 81(7):1553-1565.e8. PubMed ID: 33662274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-Type-Specific CRISPR Activation with MicroRNA-Responsive AcrllA4 Switch.
    Hirosawa M; Fujita Y; Saito H
    ACS Synth Biol; 2019 Jul; 8(7):1575-1582. PubMed ID: 31268303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors.
    Jain PK; Ramanan V; Schepers AG; Dalvie NS; Panda A; Fleming HE; Bhatia SN
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12440-4. PubMed ID: 27554600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.