These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30810037)

  • 1. Evaluation of Electrode and Solution Area-Based Resistances Enables Quantitative Comparisons of Factors Impacting Microbial Fuel Cell Performance.
    Rossi R; Cario BP; Santoro C; Yang W; Saikaly PE; Logan BE
    Environ Sci Technol; 2019 Apr; 53(7):3977-3986. PubMed ID: 30810037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of cathodic electron acceptor on microbial fuel cell internal resistance.
    Lawson K; Rossi R; Regan JM; Logan BE
    Bioresour Technol; 2020 Nov; 316():123919. PubMed ID: 32771939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells.
    Logan BE; Zikmund E; Yang W; Rossi R; Kim KY; Saikaly PE; Zhang F
    Environ Sci Technol; 2018 Aug; 52(15):8977-8985. PubMed ID: 29965737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells.
    Rossi R; Logan BE
    Bioresour Technol; 2020 Dec; 318():123921. PubMed ID: 32768279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimal RED cell pairs markedly improve electrode kinetics and power production in microbial reverse electrodialysis cells.
    Cusick RD; Hatzell M; Zhang F; Logan BE
    Environ Sci Technol; 2013 Dec; 47(24):14518-24. PubMed ID: 24224718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different chemical treatments of brush and flat carbon electrodes to improve performance of microbial fuel cells.
    Fonseca EU; Yang W; Wang X; Rossi R; Logan BE
    Bioresour Technol; 2021 Dec; 342():125932. PubMed ID: 34543819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells.
    Cheng S; Logan BE
    Bioresour Technol; 2011 Mar; 102(6):4468-73. PubMed ID: 21273062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term evaluation of an air-cathode microbial fuel cell with an anion exchange membrane in a 226L wastewater treatment reactor.
    Sugioka M; Yoshida N; Yamane T; Kakihana Y; Higa M; Matsumura T; Sakoda M; Iida K
    Environ Res; 2022 Apr; 205():112416. PubMed ID: 34808126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative evaluation of effects of different cathode materials on performance in Cd(II)-reduced microbial electrolysis cells.
    Zhou R; Zhou S; He C
    Bioresour Technol; 2020 Jul; 307():123198. PubMed ID: 32217438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of reactor configuration on pilot-scale microbial fuel cell performance.
    Rossi R; Logan BE
    Water Res; 2022 Oct; 225():119179. PubMed ID: 36206685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying the electrode potential slope method as a tool to quantitatively evaluate the performance of individual microbial electrolysis cell components.
    Cario BP; Rossi R; Kim KY; Logan BE
    Bioresour Technol; 2019 Sep; 287():121418. PubMed ID: 31078815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating microbial fuel cell bioanode performance under different cathode conditions.
    Borole AP; Hamilton CY; Aaron DS; Tsouris C
    Biotechnol Prog; 2009; 25(6):1630-6. PubMed ID: 19731337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating a multi-panel air cathode through electrochemical and biotic tests.
    Rossi R; Jones D; Myung J; Zikmund E; Yang W; Gallego YA; Pant D; Evans PJ; Page MA; Cropek DM; Logan BE
    Water Res; 2019 Jan; 148():51-59. PubMed ID: 30343198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.
    Wang Y; Wu J; Yang S; Li H; Li X
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29954125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of Anode Materials on Electricity Generation and Organic Wastewater Treatment of 6 L Microbial Fuel Cells].
    Ding WJ; Yu LL; Chen J; Cheng SA
    Huan Jing Ke Xue; 2017 May; 38(5):1911-1917. PubMed ID: 29965096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of gradual transition of substrate on performance of flat-panel air-cathode microbial fuel cells to treat domestic wastewater.
    Park Y; Park S; Nguyen VK; Kim JR; Kim HS; Kim BG; Yu J; Lee T
    Bioresour Technol; 2017 Feb; 226():158-163. PubMed ID: 27997870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological modification in air-cathode microbial fuel cell: Effect on oxygen diffusion, current generation and wastewater degradation.
    Arkatkar A; Mungray AK; Sharma P
    Chemosphere; 2021 Dec; 284():131243. PubMed ID: 34186222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant.
    He W; Wallack MJ; Kim KY; Zhang X; Yang W; Zhu X; Feng Y; Logan BE
    Water Res; 2016 Nov; 105():351-360. PubMed ID: 27639344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells.
    Agrahari R; Bayar B; Abubackar HN; Giri BS; Rene ER; Rani R
    Chemosphere; 2022 Mar; 290():133184. PubMed ID: 34890618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.