These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 30810048)
1. Tissue and Exosomal Serine Protease Inhibitors Are Significantly Overexpressed in Chronic Rhinosinusitis With Nasal Polyps. Mueller SK; Nocera AL; Dillon ST; Libermann TA; Wendler O; Bleier BS Am J Rhinol Allergy; 2019 Jul; 33(4):359-368. PubMed ID: 30810048 [No Abstract] [Full Text] [Related]
2. Epithelial genes in chronic rhinosinusitis with and without nasal polyps. Richer SL; Truong-Tran AQ; Conley DB; Carter R; Vermylen D; Grammer LC; Peters AT; Chandra RK; Harris KE; Kern RC; Schleimer RP Am J Rhinol; 2008; 22(3):228-34. PubMed ID: 18588753 [TBL] [Abstract][Full Text] [Related]
3. Tissue factor and tissue factor pathway inhibitor in nasal mucosa and nasal secretions of chronic rhinosinusitis with nasal polyp. Shimizu S; Ogawa T; Takezawa K; Tojima I; Kouzaki H; Shimizu T Am J Rhinol Allergy; 2015; 29(4):235-42. PubMed ID: 26163243 [TBL] [Abstract][Full Text] [Related]
4. Corelationship between matrix metalloproteinase 2 and 9 expression and severity of chronic rhinosinusitis with nasal polyposis. Wang LF; Chien CY; Chiang FY; Chai CY; Tai CF Am J Rhinol Allergy; 2012; 26(1):e1-4. PubMed ID: 22391064 [TBL] [Abstract][Full Text] [Related]
5. Emerging Role of Proteases in the Pathogenesis of Chronic Rhinosinusitis with Nasal Polyps. Wu D; Wei Y; Bleier BS Front Cell Infect Microbiol; 2017; 7():538. PubMed ID: 29376037 [TBL] [Abstract][Full Text] [Related]
6. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium. Rudack C; Steinhoff M; Mooren F; Buddenkotte J; Becker K; von Eiff C; Sachse F Clin Exp Allergy; 2007 Jul; 37(7):1009-22. PubMed ID: 17581194 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of remodeling markers by tissue structure in nasal polyposis. de Borja Callejas F; Picado C; Martínez-Antón A; Alobid I; Pujols L; Valero A; Roca-Ferrer J; Mullol J Am J Rhinol Allergy; 2013; 27(3):e69-74. PubMed ID: 23710947 [TBL] [Abstract][Full Text] [Related]
9. Exosomal miR-22-3p Derived from Chronic Rhinosinusitis with Nasal Polyps Regulates Vascular Permeability by Targeting VE-Cadherin. Zhang W; Zhang T; Yan Y; Zhang J; Zhou Y; Pei Y; Yao L; You B; Chen J Biomed Res Int; 2020; 2020():1237678. PubMed ID: 33274193 [TBL] [Abstract][Full Text] [Related]
10. Expression of IL-33 and its receptor ST2 in chronic rhinosinusitis with nasal polyps. Baba S; Kondo K; Kanaya K; Suzukawa K; Ushio M; Urata S; Asakage T; Kakigi A; Suzukawa M; Ohta K; Yamasoba T Laryngoscope; 2014 Apr; 124(4):E115-22. PubMed ID: 24122812 [TBL] [Abstract][Full Text] [Related]
11. Increased expression of angiogenin in nasal polyps. Hwang KS; Park IH; Choi H; Lee SH; Lee SH; Lee HM Am J Rhinol Allergy; 2011; 25(1):e23-6. PubMed ID: 21711968 [TBL] [Abstract][Full Text] [Related]
12. Highly multiplexed proteomic analysis reveals significant tissue and exosomal coagulation pathway derangement in chronic rhinosinusitis with nasal polyps. Mueller SK; Nocera AL; Dillon ST; Wu D; Libermann TA; Bleier BS Int Forum Allergy Rhinol; 2018 Dec; 8(12):1438-1444. PubMed ID: 30091854 [TBL] [Abstract][Full Text] [Related]
13. Olfactory mucosa in nasal polyposis: implications for FESS outcome. Konstantinidis I; Witt M; Kaidoglou K; Constantinidis J; Gudziol V Rhinology; 2010 Mar; 48(1):47-53. PubMed ID: 20502735 [TBL] [Abstract][Full Text] [Related]
14. Influence of nasal mucosa irritants on the occurrence of chronic rhinosinusitis without /and with polyps. Olszewska A; Niewiadomski P; Olszewski J Otolaryngol Pol; 2020 Jun; 74(5):1-5. PubMed ID: 33028737 [TBL] [Abstract][Full Text] [Related]
15. [Role of the -765 G/C polymorphism of COX-2 gene in pathogenesis of chronic rhinosinusitis with nose polyps in a Polish population]. Sitarek P; Zielińska-Bliźniewska H; Miłoński J; Przybyłowska K; Majsterek I; Olszewski J Otolaryngol Pol; 2012; 66(3):181-4. PubMed ID: 22748678 [TBL] [Abstract][Full Text] [Related]
16. A Comprehensive Systematic Review of the Association Between Airway Mucins and Chronic Rhinosinusitis. Kato K; Song BH; Howe CL; Chang EH Am J Rhinol Allergy; 2019 Jul; 33(4):433-448. PubMed ID: 30892914 [No Abstract] [Full Text] [Related]
17. [Activity of monoamine oxidase in nasal mucosa in patients with chronic rhinosinusitis]. Bykova VP Vestn Otorinolaringol; 1971; 33(3):83-6. PubMed ID: 4938303 [No Abstract] [Full Text] [Related]
18. Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps. Liu CC; Xia M; Zhang YJ; Jin P; Zhao L; Zhang J; Li T; Zhou XM; Tu YY; Kong F; Sun C; Shi L; Zhao MQ Biochem Biophys Res Commun; 2018 Jun; 500(2):145-151. PubMed ID: 29605298 [TBL] [Abstract][Full Text] [Related]
19. Distinct gene expression profiles and regulation networks of nasal polyps in eosinophilic and non-eosinophilic chronic rhinosinusitis. Okada N; Nakayama T; Asaka D; Inoue N; Tsurumoto T; Takaishi S; Otori N; Kojima H; Matsuda A; Oboki K; Saito H; Matsumoto K; Yoshikawa M Int Forum Allergy Rhinol; 2018 May; 8(5):592-604. PubMed ID: 29337425 [TBL] [Abstract][Full Text] [Related]
20. Increased expression of IL-19 in the epithelium of patients with chronic rhinosinusitis and nasal polyps. Pace E; Scafidi V; Di Bona D; Siena L; Chiappara G; Ferraro M; La Grutta S; Gallina S; Speciale R; Ballacchino A; Bachert C; Bousquet J; Gjomarkaj M Allergy; 2012 Jul; 67(7):878-86. PubMed ID: 22583192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]