These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 30810370)

  • 1. BPscore: An Effective Metric for Meaningful Comparisons of Structural Chromosome Segmentations.
    Zaborowski R; Wilczyński B
    J Comput Biol; 2019 Apr; 26(4):305-314. PubMed ID: 30810370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural heterogeneity and functional diversity of topologically associating domains in mammalian genomes.
    Wang XT; Dong PF; Zhang HY; Peng C
    Nucleic Acids Res; 2015 Sep; 43(15):7237-46. PubMed ID: 26150425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Methods to Quantify the Genomic Similarity of Topological Associating Domains.
    Li Y; Wu A; Liu G; Liu L
    J Comput Biol; 2019 Nov; 26(11):1326-1338. PubMed ID: 31260328
    [No Abstract]   [Full Text] [Related]  

  • 4. HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions.
    Wang XT; Cui W; Peng C
    Nucleic Acids Res; 2017 Nov; 45(19):e163. PubMed ID: 28977529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interphase human chromosome exhibits out of equilibrium glassy dynamics.
    Shi G; Liu L; Hyeon C; Thirumalai D
    Nat Commun; 2018 Aug; 9(1):3161. PubMed ID: 30089831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topology, structures, and energy landscapes of human chromosomes.
    Zhang B; Wolynes PG
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6062-7. PubMed ID: 25918364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of computational methods for Hi-C data analysis.
    Forcato M; Nicoletti C; Pal K; Livi CM; Ferrari F; Bicciato S
    Nat Methods; 2017 Jul; 14(7):679-685. PubMed ID: 28604721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale 3D chromatin reconstruction from chromosomal contacts.
    Zhang Y; Liu W; Lin Y; Ng YK; Li S
    BMC Genomics; 2019 Apr; 20(Suppl 2):186. PubMed ID: 30967119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci.
    Liu L; Shi G; Thirumalai D; Hyeon C
    PLoS Comput Biol; 2018 Dec; 14(12):e1006617. PubMed ID: 30507936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains.
    Xu J; Xu X; Huang D; Luo Y; Lin L; Bai X; Zheng Y; Yang Q; Cheng Y; Huang A; Shi J; Bo X; Gu J; Chen H
    Nat Commun; 2024 May; 15(1):4376. PubMed ID: 38782890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InTAD: chromosome conformation guided analysis of enhancer target genes.
    Okonechnikov K; Erkek S; Korbel JO; Pfister SM; Chavez L
    BMC Bioinformatics; 2019 Jan; 20(1):60. PubMed ID: 30704404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TADKB: Family classification and a knowledge base of topologically associating domains.
    Liu T; Porter J; Zhao C; Zhu H; Wang N; Sun Z; Mo YY; Wang Z
    BMC Genomics; 2019 Mar; 20(1):217. PubMed ID: 30871473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical chromatin organization detected by TADpole.
    Soler-Vila P; Cuscó P; Farabella I; Di Stefano M; Marti-Renom MA
    Nucleic Acids Res; 2020 Apr; 48(7):e39. PubMed ID: 32083658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting three-dimensional genome organization with chromatin states.
    Qi Y; Zhang B
    PLoS Comput Biol; 2019 Jun; 15(6):e1007024. PubMed ID: 31181064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BHi-Cect: a top-down algorithm for identifying the multi-scale hierarchical structure of chromosomes.
    Kumar V; Leclerc S; Taniguchi Y
    Nucleic Acids Res; 2020 Mar; 48(5):e26. PubMed ID: 32009153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.