These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 3081043)

  • 1. Studies on the mechanism of formation of 4-hydroxynonenal during microsomal lipid peroxidation.
    Esterbauer H; Benedetti A; Lang J; Fulceri R; Fauler G; Comporti M
    Biochim Biophys Acta; 1986 Mar; 876(1):154-66. PubMed ID: 3081043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fatty acid saturation on NADPH-dependent lipid peroxidation in rat liver microsomes.
    Lokesh BR; Mathur SN; Spector AA
    J Lipid Res; 1981 Aug; 22(6):905-15. PubMed ID: 6792310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between malondialdehyde production and arachidonate consumption during NADPH-supported microsomal lipid peroxidation.
    Jordan RA; Schenkman JB
    Biochem Pharmacol; 1982 Apr; 31(7):1393-400. PubMed ID: 6807321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of esterified arachidonate by rat liver microsomes.
    Davis HW; Suzuki T; Schenkman JB
    Arch Biochem Biophys; 1987 Jan; 252(1):218-28. PubMed ID: 3101595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of protein carbonyl formation and lipid peroxidation by glutathione in rat liver microsomes.
    Palamanda JR; Kehrer JP
    Arch Biochem Biophys; 1992 Feb; 293(1):103-9. PubMed ID: 1731626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes.
    Esterbauer H; Cheeseman KH; Dianzani MU; Poli G; Slater TF
    Biochem J; 1982 Oct; 208(1):129-40. PubMed ID: 7159389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of the lipid peroxidation product 4-hydroxynonenal by isolated hepatocytes and by liver cytosolic fractions.
    Esterbauer H; Zollner H; Lang J
    Biochem J; 1985 Jun; 228(2):363-73. PubMed ID: 3160340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of oxygen tension on the generation of alkanes and malondialdehyde by peroxidizing rat liver microsomes.
    Reiter R; Burk RF
    Biochem Pharmacol; 1987 Mar; 36(6):925-9. PubMed ID: 3566790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids.
    Benedetti A; Comporti M; Esterbauer H
    Biochim Biophys Acta; 1980 Nov; 620(2):281-96. PubMed ID: 6254573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen peroxide and hematin in microsomal lipid peroxidation.
    Ursini F; Maiorino M; Ferri L; Valente M; Gregolin C
    J Inorg Biochem; 1981 Oct; 15(2):163-9. PubMed ID: 7288441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of products originating from the peroxidation of liver microsomal lipids to the non-lipid constituents of the microsomal membrane.
    Casini AF; Benedetti A; Ferrali M; Comporti M
    Chem Biol Interact; 1979 May; 25(2-3):211-27. PubMed ID: 466733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rabbit liver microsomal lipid peroxidation. The effect of lipid on the rate of peroxidation.
    Tien M; Aust SD
    Biochim Biophys Acta; 1982 Jul; 712(1):1-9. PubMed ID: 6810940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid.
    Capdevila J; Chacos N; Werringloer J; Prough RA; Estabrook RW
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5362-6. PubMed ID: 6795631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations of the microsomal glucose-6-phosphatase system evoked by ferrous iron- and haloalkane free-radical-mediated lipid peroxidation.
    de Groot H; Noll T; Rymsa B
    Biochim Biophys Acta; 1986 May; 881(3):350-5. PubMed ID: 3008850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of carbonyl functions in phospholipids of liver microsomes in CCl4- and BrCCl3-poisoned rats.
    Benedetti A; Fulceri R; Ferrali M; Ciccoli L; Esterbauer H; Comporti M
    Biochim Biophys Acta; 1982 Sep; 712(3):628-38. PubMed ID: 7126629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the role of microsomal aldehyde dehydrogenase in metabolism of aldehydic products of lipid peroxidation.
    Antonenkov VD; Pirozhkov SV; Panchenko LF
    FEBS Lett; 1987 Nov; 224(2):357-60. PubMed ID: 3691794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible involvement of the lipid-peroxidation product 4-hydroxynonenal in the formation of fluorescent chromolipids.
    Esterbauer H; Koller E; Slee RG; Koster JF
    Biochem J; 1986 Oct; 239(2):405-9. PubMed ID: 3814081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysis of erythrocytes as a result of microsomal lipid peroxidation induced by CCl4 or FeCl2.
    Schulze RM; Kappus H
    Res Commun Chem Pathol Pharmacol; 1980 Jan; 27(1):129-37. PubMed ID: 7360993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxic aldehydes originating from the peroxidation of liver microsomal lipids. Identification of 4,5-dihydroxydecenal.
    Benedetti A; Comporti M; Fulceri R; Esterbauer H
    Biochim Biophys Acta; 1984 Feb; 792(2):172-81. PubMed ID: 6320898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human placental lipid peroxidation. Some characteristics of the NADPH-supported microsomal reaction.
    Kulkarni AP; Kenel MF
    Gen Pharmacol; 1987; 18(5):491-6. PubMed ID: 3115865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.