BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30810810)

  • 21. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates.
    Ai M; Zhu Y; Jia X
    World J Microbiol Biotechnol; 2021 Jan; 37(1):2. PubMed ID: 33392870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Formation of polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha].
    Yan Q; Du GC; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):497-501. PubMed ID: 15969073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production.
    Volova T; Demidenko A; Kiselev E; Baranovskiy S; Shishatskaya E; Zhila N
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):225-237. PubMed ID: 30367183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48.
    Gamal RF; Abdelhady HM; Khodair TA; El-Tayeb TS; Hassan EA; Aboutaleb KA
    Braz J Microbiol; 2013; 44(2):539-49. PubMed ID: 24294253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates.
    Shah S; Kumar A
    Braz J Microbiol; 2021 Jun; 52(2):715-726. PubMed ID: 33590449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of dissolved oxygen content as a modulator of microbial polyhydroxyalkanoate synthesis.
    Blunt W; Sparling R; Gapes DJ; Levin DB; Cicek N
    World J Microbiol Biotechnol; 2018 Jul; 34(8):106. PubMed ID: 29971506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.
    Anjum A; Zuber M; Zia KM; Noreen A; Anjum MN; Tabasum S
    Int J Biol Macromol; 2016 Aug; 89():161-74. PubMed ID: 27126172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications.
    Behera S; Priyadarshanee M; Vandana ; Das S
    Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cost-effective defined medium for the production of polyhydroxyalkanoates using agricultural raw materials.
    Suwannasing W; Imai T; Kaewkannetra P
    Bioresour Technol; 2015 Oct; 194():67-74. PubMed ID: 26185927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing.
    Kosseva MR; Rusbandi E
    Int J Biol Macromol; 2018 Feb; 107(Pt A):762-778. PubMed ID: 28928063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial synthesis of biodegradable polyhydroxyalkanoates.
    Verlinden RA; Hill DJ; Kenward MA; Williams CD; Radecka I
    J Appl Microbiol; 2007 Jun; 102(6):1437-49. PubMed ID: 17578408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid and qualitative fluorescence-based method for the assessment of PHA production in marine bacteria during batch culture.
    Elain A; Le Fellic M; Corre YM; Le Grand A; Le Tilly V; Audic JL; Bruzaud S
    World J Microbiol Biotechnol; 2015 Oct; 31(10):1555-63. PubMed ID: 26187125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation.
    Ma R; Li J; Tyagi RD; Zhang X
    Bioresour Technol; 2024 Jan; 391(Pt A):129977. PubMed ID: 37925086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review.
    Sabapathy PC; Devaraj S; Meixner K; Anburajan P; Kathirvel P; Ravikumar Y; Zabed HM; Qi X
    Bioresour Technol; 2020 Jun; 306():123132. PubMed ID: 32220472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.
    Manso Cobos I; Ibáñez García MI; de la Peña Moreno F; Sáez Melero LP; Luque-Almagro VM; Castillo Rodríguez F; Roldán Ruiz MD; Prieto Jiménez MA; Moreno Vivián C
    Microb Cell Fact; 2015 Jun; 14():77. PubMed ID: 26055753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: Impact on performance and microbial population.
    Gouveia AR; Freitas EB; Galinha CF; Carvalho G; Duque AF; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):108-116. PubMed ID: 27422276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microalgae as source of polyhydroxyalkanoates (PHAs) - A review.
    Costa SS; Miranda AL; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2019 Jun; 131():536-547. PubMed ID: 30885732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular identification of polyhydroxyalkanoates-producing bacteria isolated from enriched microbial community.
    Ciesielski S; Pokoj T; Mozejko J; Klimiuk E
    Pol J Microbiol; 2013; 62(1):45-50. PubMed ID: 23829076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Halomonas and Pathway Engineering for Bioplastics Production.
    Xiao-Ran J; Jin Y; Xiangbin C; Guo-Qiang C
    Methods Enzymol; 2018; 608():309-328. PubMed ID: 30173767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs).
    Reddy VUN; Ramanaiah SV; Reddy MV; Chang YC
    Bioengineering (Basel); 2022 May; 9(5):. PubMed ID: 35621503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.