These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 30810978)
1. The Effect of 2-Ketobutyrate on Mitochondrial Substrate-Level Phosphorylation. Bui D; Ravasz D; Chinopoulos C Neurochem Res; 2019 Oct; 44(10):2301-2306. PubMed ID: 30810978 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial diaphorases as NAD⁺ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition. Kiss G; Konrad C; Pour-Ghaz I; Mansour JJ; Németh B; Starkov AA; Adam-Vizi V; Chinopoulos C FASEB J; 2014 Apr; 28(4):1682-97. PubMed ID: 24391134 [TBL] [Abstract][Full Text] [Related]
3. Effect of alpha-ketobutyrate on palmitic acid and pyruvate metabolism in isolated rat hepatocytes. Brass EP Biochim Biophys Acta; 1986 Aug; 888(1):18-24. PubMed ID: 3741887 [TBL] [Abstract][Full Text] [Related]
4. Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD Ravasz D; Kacso G; Fodor V; Horvath K; Adam-Vizi V; Chinopoulos C Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):909-924. PubMed ID: 29746824 [TBL] [Abstract][Full Text] [Related]
5. Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl-CoA ligase in the citric acid cycle. Komlódi T; Tretter L Neuropharmacology; 2017 Sep; 123():287-298. PubMed ID: 28495375 [TBL] [Abstract][Full Text] [Related]
6. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. Németh B; Doczi J; Csete D; Kacso G; Ravasz D; Adams D; Kiss G; Nagy AM; Horvath G; Tretter L; Mócsai A; Csépányi-Kömi R; Iordanov I; Adam-Vizi V; Chinopoulos C FASEB J; 2016 Jan; 30(1):286-300. PubMed ID: 26358042 [TBL] [Abstract][Full Text] [Related]
7. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. Kiss G; Konrad C; Doczi J; Starkov AA; Kawamata H; Manfredi G; Zhang SF; Gibson GE; Beal MF; Adam-Vizi V; Chinopoulos C FASEB J; 2013 Jun; 27(6):2392-406. PubMed ID: 23475850 [TBL] [Abstract][Full Text] [Related]
8. Effects of organic acids on the synthesis of citrulline by intact rat liver mitochondria. Rabier D; Briand P; Petit F; Kamoun P; Cathelineau L Biochimie; 1986 May; 68(5):639-47. PubMed ID: 2873843 [TBL] [Abstract][Full Text] [Related]
9. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects. Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. Chinopoulos C; Seyfried TN ASN Neuro; 2018; 10():1759091418818261. PubMed ID: 30909720 [TBL] [Abstract][Full Text] [Related]
11. Adenine and guanine nucleotide-specific succinyl-CoA synthetases in the clonal beta-cell mitochondria: implications in the beta-cell high-energy phosphate metabolism in relation to physiological insulin secretion. Kowluru A Diabetologia; 2001 Jan; 44(1):89-94. PubMed ID: 11206416 [TBL] [Abstract][Full Text] [Related]
12. 2-Methylbutyryl CoA dehydrogenase from mitochondria of Ascaris suum and its relationship to NADH-dependent 2-methylcrotonyl CoA reduction. Komuniecki R; Fekete S; Thissen J Biochem Biophys Res Commun; 1984 Feb; 118(3):783-8. PubMed ID: 6704106 [TBL] [Abstract][Full Text] [Related]
13. Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation. Ravasz D; Kacso G; Fodor V; Horvath K; Adam-Vizi V; Chinopoulos C Neurochem Int; 2017 Oct; 109():41-53. PubMed ID: 28300620 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic metabolism in Ascaris suum: acyl CoA intermediates in isolated mitochondria synthesizing 2-methyl branched-chain fatty acids. Komuniecki R; Campbell T; Rubin N Mol Biochem Parasitol; 1987 Jun; 24(2):147-54. PubMed ID: 3627167 [TBL] [Abstract][Full Text] [Related]
15. Metabolic basis for the isoleucine, pantothenate or methionine requirement of ilvG strains of Salmonella typhimurium. Primerano DA; Burns RO J Bacteriol; 1982 Jun; 150(3):1202-11. PubMed ID: 7042686 [TBL] [Abstract][Full Text] [Related]
16. The error in the cryptic stereospecificity of methylmalonyl-CoA mutase. The use of carba-(dethia)-coenzyme A substrate analogues gives new insight into the enzyme mechanism. Hull WE; Michenfelder M; Rétey J Eur J Biochem; 1988 Apr; 173(1):191-201. PubMed ID: 2895708 [TBL] [Abstract][Full Text] [Related]
17. Rotenone-mediated changes in intracellular coenzyme A thioester levels: implications for mitochondrial dysfunction. Basu SS; Blair IA Chem Res Toxicol; 2011 Oct; 24(10):1630-2. PubMed ID: 21950265 [TBL] [Abstract][Full Text] [Related]
18. Escherichia coli succinyl coenzyme A synthetase. Inhibition of ATP-stimulated succinate----succinyl coenzyme A exchange at low succinyl coenzyme A concentrations by an ADP trap. Nishimura JS; Mitchell T J Biol Chem; 1984 Feb; 259(4):2144-8. PubMed ID: 6365903 [TBL] [Abstract][Full Text] [Related]
19. The ASCT/SCS cycle fuels mitochondrial ATP and acetate production in Trypanosoma brucei. Mochizuki K; Inaoka DK; Mazet M; Shiba T; Fukuda K; Kurasawa H; Millerioux Y; Boshart M; Balogun EO; Harada S; Hirayama K; Bringaud F; Kita K Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148283. PubMed ID: 32763239 [TBL] [Abstract][Full Text] [Related]
20. Acute sources of mitochondrial NAD Chinopoulos C Exp Neurol; 2020 May; 327():113218. PubMed ID: 32035071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]