BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30811994)

  • 1. High Sensitivity Profiling of Chromatin Structure by MNase-SSP.
    Ramani V; Qiu R; Shendure J
    Cell Rep; 2019 Feb; 26(9):2465-2476.e4. PubMed ID: 30811994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MPE-seq, a new method for the genome-wide analysis of chromatin structure.
    Ishii H; Kadonaga JT; Ren B
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3457-65. PubMed ID: 26080409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.
    Gutiérrez G; Millán-Zambrano G; Medina DA; Jordán-Pla A; Pérez-Ortín JE; Peñate X; Chávez S
    Epigenetics Chromatin; 2017 Dec; 10(1):58. PubMed ID: 29212533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling Nucleosome Occupancy by MNase-seq: Experimental Protocol and Computational Analysis.
    Pajoro A; Muiño JM; Angenent GC; Kaufmann K
    Methods Mol Biol; 2018; 1675():167-181. PubMed ID: 29052192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative MNase-seq accurately maps nucleosome occupancy levels.
    Chereji RV; Bryson TD; Henikoff S
    Genome Biol; 2019 Sep; 20(1):198. PubMed ID: 31519205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq).
    Hoeijmakers WAM; Bártfai R
    Methods Mol Biol; 2018; 1689():83-101. PubMed ID: 29027167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MNase-Sensitive Complexes in Yeast: Nucleosomes and Non-histone Barriers.
    Chereji RV; Ocampo J; Clark DJ
    Mol Cell; 2017 Feb; 65(3):565-577.e3. PubMed ID: 28157509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standardized collection of MNase-seq experiments enables unbiased dataset comparisons.
    Rizzo JM; Bard JE; Buck MJ
    BMC Mol Biol; 2012 May; 13():15. PubMed ID: 22559821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide mapping of nucleosome positions in yeast using high-resolution MNase ChIP-Seq.
    Wal M; Pugh BF
    Methods Enzymol; 2012; 513():233-50. PubMed ID: 22929772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide approaches to determining nucleosome occupancy in metazoans using MNase-Seq.
    Cui K; Zhao K
    Methods Mol Biol; 2012; 833():413-9. PubMed ID: 22183607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MNase Profiling of Promoter Chromatin in
    Cole L; Dennis J
    G3 (Bethesda); 2020 Jul; 10(7):2171-2178. PubMed ID: 32404364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2018; 1830():353-366. PubMed ID: 30043381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis.
    Pass DA; Sornay E; Marchbank A; Crawford MR; Paszkiewicz K; Kent NA; Murray JAH
    PLoS Genet; 2017 Sep; 13(9):e1006988. PubMed ID: 28902852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling Accessible Chromatin and Nucleosomes in the Mammalian Genome.
    Lim HW; Iwafuchi M
    Methods Mol Biol; 2023; 2599():59-68. PubMed ID: 36427143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyses of Promoter , Enhancer, and Nucleosome Organization in Mammalian Cells by MNase-Seq.
    Esnault C; Magat T; García-Oliver E; Andrau JC
    Methods Mol Biol; 2021; 2351():93-104. PubMed ID: 34382185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility.
    Mieczkowski J; Cook A; Bowman SK; Mueller B; Alver BH; Kundu S; Deaton AM; Urban JA; Larschan E; Park PJ; Kingston RE; Tolstorukov MY
    Nat Commun; 2016 May; 7():11485. PubMed ID: 27151365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controls of nucleosome positioning in the human genome.
    Gaffney DJ; McVicker G; Pai AA; Fondufe-Mittendorf YN; Lewellen N; Michelini K; Widom J; Gilad Y; Pritchard JK
    PLoS Genet; 2012; 8(11):e1003036. PubMed ID: 23166509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Assay Profiling of Nucleosome Occupancy and Chromatin Accessibility.
    Cook A; Mieczkowski J; Tolstorukov MY
    Curr Protoc Mol Biol; 2017 Oct; 120():21.34.1-21.34.18. PubMed ID: 28967996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The esBAF and ISWI nucleosome remodeling complexes influence occupancy of overlapping dinucleosomes and fragile nucleosomes in murine embryonic stem cells.
    Klein DC; Troy K; Tripplehorn SA; Hainer SJ
    BMC Genomics; 2023 Apr; 24(1):201. PubMed ID: 37055726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique features of the apoptotic endonuclease DFF40/CAD relative to micrococcal nuclease as a structural probe for chromatin.
    Widlak P; Garrard WT
    Biochem Cell Biol; 2006 Aug; 84(4):405-10. PubMed ID: 16936813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.