These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Evaluation of Tactics for Management of Thrips-Vectored Tomato spotted wilt virus in Tomato. Riley DG; Pappu HR Plant Dis; 2000 Aug; 84(8):847-852. PubMed ID: 30832137 [TBL] [Abstract][Full Text] [Related]
5. Population dynamics of Frankliniella spp. and tomato spotted wilt incidence as influenced by cultural management tactics in tomato. Stavisky J; Funderburk J; Brodbeck BV; Olson SM; Andersen PC J Econ Entomol; 2002 Dec; 95(6):1216-21. PubMed ID: 12539834 [TBL] [Abstract][Full Text] [Related]
6. Tactics for management of thrips (Thysanoptera: Thripidae) and tomato spotted wilt virus in tomato. Riley DG; Pappu HR J Econ Entomol; 2004 Oct; 97(5):1648-58. PubMed ID: 15568355 [TBL] [Abstract][Full Text] [Related]
7. Epidemiology of spotted wilt disease of peanut caused by Tomato spotted wilt virus in the southeastern U.S. Culbreath AK; Srinivasan R Virus Res; 2011 Aug; 159(2):101-9. PubMed ID: 21620508 [TBL] [Abstract][Full Text] [Related]
8. CONTROL OF VIRAL DISEASES TRANSMITTED IN A PERSISTENT MANNER BY THRIPS IN PEPPER (TOMATO SPOTTED WILT VIRUS). Fanigliulo A; Viggiano A; Gualco A; Crescenzi A Commun Agric Appl Biol Sci; 2014; 79(3):433-7. PubMed ID: 26080477 [TBL] [Abstract][Full Text] [Related]
9. Management of Tomato spotted wilt virus in Flue-Cured Tobacco with Acibenzolar-S-Methyl and Imidacloprid. Csinos AS; Pappu HR; McPherson RM; Stephenson MG Plant Dis; 2001 Mar; 85(3):292-296. PubMed ID: 30832045 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Alternatives to an Organophosphate Insecticide with Selected Cultural Practices: Effects on Thrips, Frankliniella fusca, and Incidence of Spotted Wilt in Peanut Farmscapes. Marasigan K; Toews M; Kemerait R; Abney MR; Culbreath A; Srinivasan R J Econ Entomol; 2018 May; 111(3):1030-1041. PubMed ID: 29635299 [TBL] [Abstract][Full Text] [Related]
11. Three decades of managing Tomato spotted wilt virus in peanut in southeastern United States. Srinivasan R; Abney MR; Culbreath AK; Kemerait RC; Tubbs RS; Monfort WS; Pappu HR Virus Res; 2017 Sep; 241():203-212. PubMed ID: 28549856 [TBL] [Abstract][Full Text] [Related]
12. Development of an IPM Strategy for Thrips and Batuman O; Turini TA; LeStrange M; Stoddard S; Miyao G; Aegerter BJ; Chen LF; McRoberts N; Ullman DE; Gilbertson RL Pathogens; 2020 Aug; 9(8):. PubMed ID: 32764311 [No Abstract] [Full Text] [Related]
13. Occurrence of Five Thrips Species on Flue-Cured Tobacco and Impact on Spotted Wilt Disease Incidence in Georgia. McPherson RM; Pappu HR; Jones DC Plant Dis; 1999 Aug; 83(8):765-767. PubMed ID: 30845565 [TBL] [Abstract][Full Text] [Related]
14. Integrating Plant Essential Oils and Kaolin for the Sustainable Management of Thrips and Tomato Spotted Wilt on Tomato. Reitz SR; Maiorino G; Olson S; Sprenkel R; Crescenzi A; Momol MT Plant Dis; 2008 Jun; 92(6):878-886. PubMed ID: 30769719 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a Push-Pull System for the Management of Tyler-Julian K; Funderburk J; Srivastava M; Olson S; Adkins S Insects; 2018 Dec; 9(4):. PubMed ID: 30544566 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of Alternatives to Carbamate and Organophosphate Insecticides Against Thrips and Tomato Spotted Wilt Virus in Peanut Production. Marasigan K; Toews M; Kemerait R; Abney MR; Culbreath A; Srinivasan R J Econ Entomol; 2016 Apr; 109(2):544-57. PubMed ID: 26637534 [TBL] [Abstract][Full Text] [Related]
17. Impact of early-season thrips management on reducing the risks of spotted wilt virus and suppressing aphid populations in Flue-cured tobacco. McPherson RM; Stephenson MG; Lahue SS; Mullis SW J Econ Entomol; 2005 Feb; 98(1):129-34. PubMed ID: 15765674 [TBL] [Abstract][Full Text] [Related]
18. Epidemiology and management of tomato spotted wilt in peanut. Culbreath AK; Todd JW; Brown SL Annu Rev Phytopathol; 2003; 41():53-75. PubMed ID: 12704217 [TBL] [Abstract][Full Text] [Related]
19. Tomato Spotted Wilt Virus Benefits Its Thrips Vector by Modulating Metabolic and Plant Defense Pathways in Tomato. Nachappa P; Challacombe J; Margolies DC; Nechols JR; Whitfield AE; Rotenberg D Front Plant Sci; 2020; 11():575564. PubMed ID: 33424878 [TBL] [Abstract][Full Text] [Related]
20. Role of insecticides in reducing thrips injury to plants and incidence of tomato spotted wilt virus in Virginia market-type peanut. Herbert DA; Malone S; Aref S; Brandenburg RL; Jordan DL; Royals BM; Johnson PD J Econ Entomol; 2007 Aug; 100(4):1241-7. PubMed ID: 17849876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]