These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 30812707)
1. Assessment of Resistance of Tubers of Potato Cultivars to Phytophthora erythroseptica and Pythium ultimum. Salas B; Secor GA; Taylor RJ; Gudmestad NC Plant Dis; 2003 Jan; 87(1):91-97. PubMed ID: 30812707 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity of North American Isolates of Phytophthora erythroseptica and Pythium ultimum to Mefenoxam (Metalaxyl). Taylor RJ; Salas B; Secor GA; Rivera V; Gudmestad NC Plant Dis; 2002 Jul; 86(7):797-802. PubMed ID: 30818580 [TBL] [Abstract][Full Text] [Related]
3. A Foliar Blight and Tuber Rot of Potato Caused by Phytophthora nicotianae: New Occurrences and Characterization of Isolates. Taylor RJ; Pasche JS; Gallup CA; Shew HD; Gudmestad NC Plant Dis; 2008 Apr; 92(4):492-503. PubMed ID: 30769649 [TBL] [Abstract][Full Text] [Related]
4. Control of Potato Tuber Rots Caused by Oomycetes with Foliar Applications of Phosphorous Acid. Johnson DA; Inglis DA; Miller JS Plant Dis; 2004 Oct; 88(10):1153-1159. PubMed ID: 30795259 [TBL] [Abstract][Full Text] [Related]
5. Differences in Etiology Affect Mefenoxam Efficacy and the Control of Pink Rot and Leak Tuber Diseases of Potato. Taylor RJ; Salas B; Gudmestad NC Plant Dis; 2004 Mar; 88(3):301-307. PubMed ID: 30812364 [TBL] [Abstract][Full Text] [Related]
6. In-Furrow Applications of Metalaxyl and Phosphite for Control of Pink Rot (Phytophthora erythroseptica) of Potato in New Brunswick, Canada. Al-Mughrabi KI; Peters RD; Platt HWB; Moreau G; Vikram A; Poirier R; MacDonald I Plant Dis; 2007 Oct; 91(10):1305-1309. PubMed ID: 30780528 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of Volatile Biomarker-Based Detection of Pythium Leak in Postharvest Stored Potato Tubers Using Field Asymmetric Ion Mobility Spectrometry. Kothawade GS; Sankaran S; Bates AA; Schroeder BK; Khot LR Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371462 [TBL] [Abstract][Full Text] [Related]
8. A Rapid Technique for the Evaluation of Potato Germ Plasm for Susceptibility to Pink Rot. Peters RD; Sturz AV Plant Dis; 2001 Aug; 85(8):833-837. PubMed ID: 30823049 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the Risk of Development of Fluopicolide Resistance in Phytophthora erythroseptica. Zhang X; Jiang H; Hao J Plant Dis; 2019 Feb; 103(2):284-288. PubMed ID: 30520695 [TBL] [Abstract][Full Text] [Related]
10. Tuber Rot of Potato Caused by Phytophthora nicotianae: Isolate Aggressiveness and Cultivar Susceptibility. Taylor RJ; Pasche JS; Shew HD; Lannon KR; Gudmestad NC Plant Dis; 2012 May; 96(5):693-704. PubMed ID: 30727528 [TBL] [Abstract][Full Text] [Related]
11. Biological Significance of Mefenoxam Resistance in Phytophthora erythroseptica and Its Implications for the Management of Pink Rot of Potato. Taylor RJ; Pasche JS; Gudmestad NC Plant Dis; 2006 Jul; 90(7):927-934. PubMed ID: 30781032 [TBL] [Abstract][Full Text] [Related]
12. A methodology to detect and quantify five pathogens causing potato tuber decay using real-time quantitative polymerase chain reaction. Atallah ZK; Stevenson WR Phytopathology; 2006 Sep; 96(9):1037-45. PubMed ID: 18944060 [TBL] [Abstract][Full Text] [Related]
13. The Effect of Wounding, Temperature, and Inoculum on the Development of Pink Rot of Potatoes Caused by Phytophthora erythroseptica. Salas B; Stack RW; Secor GA; Gudmestad NC Plant Dis; 2000 Dec; 84(12):1327-1333. PubMed ID: 30831876 [TBL] [Abstract][Full Text] [Related]
14. Effect of Seed-Tuber Generation, Soilborne Inoculum, and Azoxystrobin Application on Development of Potato Black Dot Caused by Colletotrichum coccodes. Nitzan N; Cummings TF; Johnson DA Plant Dis; 2005 Nov; 89(11):1181-1185. PubMed ID: 30786441 [TBL] [Abstract][Full Text] [Related]
15. Leucine Regulates Zoosporic Germination and Infection by Jiang H; Hwang HW; Ge T; Cole B; Perkins B; Hao J Front Microbiol; 2019; 10():131. PubMed ID: 30804912 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of Major Ancestors of North American Soybean Cultivars for Resistance to Three Pythium Species that Cause Seedling Blight. Rod KS; Walker DR; Bradley CA Plant Dis; 2018 Nov; 102(11):2241-2252. PubMed ID: 30222055 [TBL] [Abstract][Full Text] [Related]
17. Competitive Parasitic Fitness of Mefenoxam-Sensitive and -Resistant Isolates of Phytophthora erythroseptica under Fungicide Selection Pressure. Chapara V; Taylor RJ; Pasche JS; Gudmestad NC Plant Dis; 2011 Jun; 95(6):691-696. PubMed ID: 30731895 [TBL] [Abstract][Full Text] [Related]
18. Identification and Characterization of Isolates of Pythium and Phytophthora spp. from Snap Beans with Cottony Leak. Olson JD; Damicone JP; Kahn BA Plant Dis; 2016 Jul; 100(7):1446-1453. PubMed ID: 30686183 [TBL] [Abstract][Full Text] [Related]
19. The use of newly isolated Streptomyces strain TN258 as potential biocontrol agent of potato tubers leak caused by Pythium ultimum. Sellem I; Triki MA; Elleuch L; Cheffi M; Chakchouk A; Smaoui S; Mellouli L J Basic Microbiol; 2017 May; 57(5):393-401. PubMed ID: 28217886 [TBL] [Abstract][Full Text] [Related]
20. First Report of Phytophthora cryptogea on Potato Tubers in Turkey. Çakır E; Demirci F Plant Dis; 2012 Aug; 96(8):1224. PubMed ID: 30727064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]