BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30813005)

  • 21. Scaffolds for the repair of bone defects in clinical studies: a systematic review.
    Zeng JH; Liu SW; Xiong L; Qiu P; Ding LH; Xiong SL; Li JT; Liao XG; Tang ZM
    J Orthop Surg Res; 2018 Feb; 13(1):33. PubMed ID: 29433544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteogenesis of peripheral blood mesenchymal stem cells in self assembling peptide nanofiber for healing critical size calvarial bony defect.
    Wu G; Pan M; Wang X; Wen J; Cao S; Li Z; Li Y; Qian C; Liu Z; Wu W; Zhu L; Guo J
    Sci Rep; 2015 Nov; 5():16681. PubMed ID: 26568114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.
    Freeman FE; McNamara LM
    Tissue Eng Part B Rev; 2017 Apr; 23(2):128-141. PubMed ID: 27758156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mussel Adhesion-Inspired Reverse Transfection Platform Enhances Osteogenic Differentiation and Bone Formation of Human Adipose-Derived Stem Cells.
    Shin J; Cho JH; Jin Y; Yang K; Lee JS; Park HJ; Han HS; Lee J; Jeon H; Shin H; Cho SW
    Small; 2016 Dec; 12(45):6266-6278. PubMed ID: 27717233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone repair using periodontal ligament progenitor cell-seeded constructs.
    Tour G; Wendel M; Moll G; Tcacencu I
    J Dent Res; 2012 Aug; 91(8):789-94. PubMed ID: 22736447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple Inoculations of Bone Marrow Stromal Cells into Beta-Tricalcium Phosphate/Chitosan Scaffolds Enhances the Formation and Reconstruction of New Bone.
    Cheng G; Li Z; Xing X; Li DQ; Li ZB
    Int J Oral Maxillofac Implants; 2016; 31(1):204-15. PubMed ID: 26800180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach.
    Vetsch JR; Betts DC; Müller R; Hofmann S
    PLoS One; 2017; 12(7):e0180781. PubMed ID: 28686698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo.
    Shah AR; Cornejo A; Guda T; Sahar DE; Stephenson SM; Chang S; Krishnegowda NK; Sharma R; Wang HT
    J Craniofac Surg; 2014 Jul; 25(4):1504-9. PubMed ID: 24943502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering.
    Langenbach F; Naujoks C; Smeets R; Berr K; Depprich R; Kübler N; Handschel J
    Clin Oral Investig; 2013 Jan; 17(1):9-17. PubMed ID: 22695872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overcoming physical constraints in bone engineering: 'the importance of being vascularized'.
    Genova T; Munaron L; Carossa S; Mussano F
    J Biomater Appl; 2016 Feb; 30(7):940-51. PubMed ID: 26637441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current status of bone regeneration using adipose-derived stem cells.
    Tajima S; Tobita M; Mizuno H
    Histol Histopathol; 2018 Jul; 33(7):619-627. PubMed ID: 29094748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue engineering approaches for bone repair: concepts and evidence.
    Schroeder JE; Mosheiff R
    Injury; 2011 Jun; 42(6):609-13. PubMed ID: 21489529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering.
    Li JH; Liu DY; Zhang FM; Wang F; Zhang WK; Zhang ZT
    Chin Med J (Engl); 2011 Dec; 124(23):4022-8. PubMed ID: 22340336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries.
    Sadeghzadeh H; Dianat-Moghadam H; Del Bakhshayesh AR; Mohammadnejad D; Mehdipour A
    Stem Cell Res Ther; 2023 Aug; 14(1):194. PubMed ID: 37542279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone regenerative medicine: metatarsus defects in sheep to evaluate new therapeutic strategies for human long bone defect. A systematic review.
    Veronesi F; Martini L; Giavaresi G; Fini M
    Injury; 2020 Jul; 51(7):1457-1467. PubMed ID: 32430197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Biomaterials for bone defect repair and bone regeneration].
    Jiang XQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Oct; 52(10):600-604. PubMed ID: 29972932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration.
    Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the application of mesenchymal stem cells in bone repair and regeneration.
    Griffin M; Iqbal SA; Bayat A
    J Bone Joint Surg Br; 2011 Apr; 93(4):427-34. PubMed ID: 21464477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance.
    Fröhlich M; Grayson WL; Wan LQ; Marolt D; Drobnic M; Vunjak-Novakovic G
    Curr Stem Cell Res Ther; 2008 Dec; 3(4):254-64. PubMed ID: 19075755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.