These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30813005)

  • 61. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering.
    Zhang X; Xie C; Lin AS; Ito H; Awad H; Lieberman JR; Rubery PT; Schwarz EM; O'Keefe RJ; Guldberg RE
    J Bone Miner Res; 2005 Dec; 20(12):2124-37. PubMed ID: 16294266
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Engineering bone grafts with enhanced bone marrow and native scaffolds.
    Hung BP; Salter EK; Temple J; Mundinger GS; Brown EN; Brazio P; Rodriguez ED; Grayson WL
    Cells Tissues Organs; 2013; 198(2):87-98. PubMed ID: 24021248
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells.
    Ko E; Lee JS; Kim H; Yang SY; Yang D; Yang K; Lee J; Shin J; Yang HS; Ryu W; Cho SW
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7614-7625. PubMed ID: 28475306
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stem cells combined with bone graft substitutes in skeletal tissue engineering.
    Gamie Z; Tran GT; Vyzas G; Korres N; Heliotis M; Mantalaris A; Tsiridis E
    Expert Opin Biol Ther; 2012 Jun; 12(6):713-29. PubMed ID: 22500826
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Site-Directed Immobilization of BMP-2: Two Approaches for the Production of Innovative Osteoinductive Scaffolds.
    Tabisz B; Schmitz W; Schmitz M; Luehmann T; Heusler E; Rybak JC; Meinel L; Fiebig JE; Mueller TD; Nickel J
    Biomacromolecules; 2017 Mar; 18(3):695-708. PubMed ID: 28211679
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold.
    Petridis X; Diamanti E; Trigas GCh; Kalyvas D; Kitraki E
    J Craniomaxillofac Surg; 2015 May; 43(4):483-90. PubMed ID: 25753474
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Functionalized biomimetic calcium phosphates for bone tissue repair.
    Bigi A; Boanini E
    J Appl Biomater Funct Mater; 2017 Nov; 15(4):e313-e325. PubMed ID: 28574097
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Manufacture of degradable polymeric scaffolds for bone regeneration.
    Ge Z; Jin Z; Cao T
    Biomed Mater; 2008 Jun; 3(2):022001. PubMed ID: 18523339
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A
    J Mater Sci Mater Med; 2016 Oct; 27(10):155. PubMed ID: 27590825
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Scaffold strategies for modulating immune microenvironment during bone regeneration.
    He J; Chen G; Liu M; Xu Z; Chen H; Yang L; Lv Y
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110411. PubMed ID: 31923946
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.
    Quinlan E; Partap S; Azevedo MM; Jell G; Stevens MM; O'Brien FJ
    Biomaterials; 2015 Jun; 52():358-66. PubMed ID: 25818442
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects.
    Raftery RM; Mencía Castaño I; Chen G; Cavanagh B; Quinn B; Curtin CM; Cryan SA; O'Brien FJ
    Biomaterials; 2017 Dec; 149():116-127. PubMed ID: 29024837
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bone regenerative medicine: classic options, novel strategies, and future directions.
    Oryan A; Alidadi S; Moshiri A; Maffulli N
    J Orthop Surg Res; 2014 Mar; 9(1):18. PubMed ID: 24628910
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stem Cells in Bone Regeneration.
    Walmsley GG; Ransom RC; Zielins ER; Leavitt T; Flacco JS; Hu MS; Lee AS; Longaker MT; Wan DC
    Stem Cell Rev Rep; 2016 Oct; 12(5):524-529. PubMed ID: 27250635
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Advances in the use of stem cells and tissue engineering applications in bone repair.
    Chimutengwende-Gordon M; Khan WS
    Curr Stem Cell Res Ther; 2012 Mar; 7(2):122-6. PubMed ID: 22023632
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells.
    Ko E; Yang K; Shin J; Cho SW
    Biomacromolecules; 2013 Sep; 14(9):3202-13. PubMed ID: 23941596
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Peptides for bone tissue engineering.
    Visser R; Rico-Llanos GA; Pulkkinen H; Becerra J
    J Control Release; 2016 Dec; 244(Pt A):122-135. PubMed ID: 27794492
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Surface-decorated hydroxyapatite scaffold with on-demand delivery of dexamethasone and stromal cell derived factor-1 for enhanced osteogenesis.
    Zhang B; Li H; He L; Han Z; Zhou T; Zhi W; Lu X; Lu X; Weng J
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():355-370. PubMed ID: 29752108
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study.
    Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y
    Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.