These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 30813034)
1. Preparation and characterization of electrospun rGO-poly(ester amide) conductive scaffolds. Stone H; Lin S; Mequanint K Mater Sci Eng C Mater Biol Appl; 2019 May; 98():324-332. PubMed ID: 30813034 [TBL] [Abstract][Full Text] [Related]
3. Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering. Jiang L; Chen D; Wang Z; Zhang Z; Xia Y; Xue H; Liu Y Appl Biochem Biotechnol; 2019 Aug; 188(4):952-964. PubMed ID: 30740624 [TBL] [Abstract][Full Text] [Related]
4. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells. Rahmani A; Nadri S; Kazemi HS; Mortazavi Y; Sojoodi M Artif Organs; 2019 Aug; 43(8):780-790. PubMed ID: 30674064 [TBL] [Abstract][Full Text] [Related]
5. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489 [TBL] [Abstract][Full Text] [Related]
6. Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers. Jin L; Wu D; Kuddannaya S; Zhang Y; Wang Z ACS Appl Mater Interfaces; 2016 Mar; 8(8):5170-7. PubMed ID: 26836319 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies. Mohseni M; S A AR; H Shirazi F; Nemati NH Int J Biol Macromol; 2021 Jan; 167():881-893. PubMed ID: 33186646 [TBL] [Abstract][Full Text] [Related]
8. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540 [TBL] [Abstract][Full Text] [Related]
9. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474 [TBL] [Abstract][Full Text] [Related]
10. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth. Sudwilai T; Ng JJ; Boonkrai C; Israsena N; Chuangchote S; Supaphol P J Biomater Sci Polym Ed; 2014; 25(12):1240-52. PubMed ID: 24933469 [TBL] [Abstract][Full Text] [Related]
12. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells. Zhao Y; Gong J; Niu C; Wei Z; Shi J; Li G; Yang Y; Wang H J Biomater Sci Polym Ed; 2017 Dec; 28(18):2171-2185. PubMed ID: 28967299 [TBL] [Abstract][Full Text] [Related]
13. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering. Srinath D; Lin S; Knight DK; Rizkalla AS; Mequanint K J Tissue Eng Regen Med; 2014 Jul; 8(7):578-88. PubMed ID: 22899439 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers. Zhan J; Morsi Y; Ei-Hamshary H; Al-Deyab SS; Mo X J Biomater Sci Polym Ed; 2016; 27(5):385-402. PubMed ID: 26733331 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Zarei M; Samimi A; Khorram M; Abdi MM; Golestaneh SI Int J Biol Macromol; 2021 Jan; 168():175-186. PubMed ID: 33309657 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering. Bahrami S; Baheiraei N; Mohseni M; Razavi M; Ghaderi A; Azizi B; Rabiee N; Karimi M J Biomater Appl; 2019 Jul; 34(1):74-85. PubMed ID: 30961432 [No Abstract] [Full Text] [Related]
17. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
18. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Kai D; Tan MJ; Prabhakaran MP; Chan BQY; Liow SS; Ramakrishna S; Loh XJ Colloids Surf B Biointerfaces; 2016 Dec; 148():557-565. PubMed ID: 27690245 [TBL] [Abstract][Full Text] [Related]
19. Electrospun Scaffolds are Not Necessarily Always Made of Nanofibers as Demonstrated by Polymeric Heart Valves for Tissue Engineering. Wang Q; Gao C; Zhai H; Peng C; Yu X; Zheng X; Zhang H; Wang X; Yu L; Wang S; Ding J Adv Healthc Mater; 2024 Jun; 13(16):e2303395. PubMed ID: 38554036 [TBL] [Abstract][Full Text] [Related]
20. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Ramazani S; Karimi M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():325-34. PubMed ID: 26249597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]