These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 30813035)
1. Synthesis of calcium-deficient hydroxyapatite nanowires and nanotubes performed by template-assisted electrodeposition. Beaufils S; Rouillon T; Millet P; Le Bideau J; Weiss P; Chopart JP; Daltin AL Mater Sci Eng C Mater Biol Appl; 2019 May; 98():333-346. PubMed ID: 30813035 [TBL] [Abstract][Full Text] [Related]
2. Ordered arrays of magnetic metal nanotubes and nanowires encapsulated with carbon tubes. Gao C; Tao F; Lin W; Xu Z; Xue Z J Nanosci Nanotechnol; 2008 Sep; 8(9):4494-9. PubMed ID: 19049046 [TBL] [Abstract][Full Text] [Related]
3. Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid. Al-Salman R; Mallet J; Molinari M; Fricoteaux P; Martineau F; Troyon M; Zein El Abedin S; Endres F Phys Chem Chem Phys; 2008 Nov; 10(41):6233-7. PubMed ID: 18936846 [TBL] [Abstract][Full Text] [Related]
4. Self-supported particle-track-etched polycarbonate membranes as templates for cylindrical polypyrrole nanotubes and nanowires: an X-ray scattering and scanning force microscopy investigation. Hermsdorf N; Stamm M; Förster S; Cunis S; Funari SS; Gehrke R; Müller-Buschbaum P Langmuir; 2005 Dec; 21(25):11987-93. PubMed ID: 16316143 [TBL] [Abstract][Full Text] [Related]
5. One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis. Costa DO; Dixon SJ; Rizkalla AS ACS Appl Mater Interfaces; 2012 Mar; 4(3):1490-9. PubMed ID: 22296410 [TBL] [Abstract][Full Text] [Related]
6. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: a universal set of parameters for bridging prepatterned microelectrodes. Maijenburg AW; Maas MG; Rodijk EJ; Ahmed W; Kooij ES; Carlen ET; Blank DH; ten Elshof JE J Colloid Interface Sci; 2011 Mar; 355(2):486-93. PubMed ID: 21237462 [TBL] [Abstract][Full Text] [Related]
7. Microstructure and composition of biosynthetically synthesised hydroxyapatite. Medina Ledo H; Thackray AC; Jones IP; Marquis PM; Macaskie LE; Sammons RL J Mater Sci Mater Med; 2008 Nov; 19(11):3419-27. PubMed ID: 18568391 [TBL] [Abstract][Full Text] [Related]
9. Controlled fabrication of SnO(2) arrays of well-aligned nanotubes and nanowires. Shi L; Xu Y; Li Q Nanoscale; 2010 Oct; 2(10):2104-8. PubMed ID: 20689879 [TBL] [Abstract][Full Text] [Related]
10. Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition. Wang JG; Tian ML; Kumar N; Mallouk TE Nano Lett; 2005 Jul; 5(7):1247-53. PubMed ID: 16178219 [TBL] [Abstract][Full Text] [Related]
11. Growth of silicon nanowires of controlled diameters by electrodeposition in ionic liquid at room temperature. Mallet J; Molinari M; Martineau F; Delavoie F; Fricoteaux P; Troyon M Nano Lett; 2008 Oct; 8(10):3468-74. PubMed ID: 18788792 [TBL] [Abstract][Full Text] [Related]
12. Electrodeposition of platinum-iridium alloy nanowires for hermetic packaging of microelectronics. Petrossians A; Whalen JJ; Weiland JD; Mansfeld F Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():727-30. PubMed ID: 23365995 [TBL] [Abstract][Full Text] [Related]
13. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods. Iyyappan E; Wilson P; Sheela K; Ramya R Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():554-62. PubMed ID: 27040250 [TBL] [Abstract][Full Text] [Related]
14. Nanoconfined surfactant templated electrodeposition to porous hierarchical nanowires and nanotubes. Baber S; Zhou M; Lin QL; Naalla M; Jia QX; Lu Y; Luo HM Nanotechnology; 2010 Apr; 21(16):165603. PubMed ID: 20351410 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and magnetic characteristics of vertical feco nanowire arrayed in Al2O3 insulator of honeycomb bulkhead structure. Park DJ; Kim SH; Lee KJ; Lee JH; Choa YH J Nanosci Nanotechnol; 2006 Nov; 6(11):3408-11. PubMed ID: 17252777 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the capability of hydroxyapatite formation on Zr with anodic ZrO₂ nanotubular arrays via an effective dipping pretreatment. Wang LN; Adams A; Luo JL J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):291-301. PubMed ID: 21953699 [TBL] [Abstract][Full Text] [Related]
17. Electrodeposition and Characterization of Hydroxyapatite on TiN/316LSS. Nam PT; Lam TD; Huong HT; Phuong NT; Trang NT; Hoang T; Huong NT; Thang le B; Drouet C; Grossin D; Kergourlay E; Bertrand G; Devilliers D; Thanh DT J Nanosci Nanotechnol; 2015 Dec; 15(12):9991-10001. PubMed ID: 26682444 [TBL] [Abstract][Full Text] [Related]
18. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. Li Z; Yubao L; Aiping Y; Xuelin P; Xuejiang W; Xiang Z J Mater Sci Mater Med; 2005 Mar; 16(3):213-9. PubMed ID: 15744612 [TBL] [Abstract][Full Text] [Related]
19. Effects of ultrasonic treatment and current density on the properties of hydroxyapatite coating via electrodeposition and its in vitro biomineralization behavior. Li TT; Ling L; Lin MC; Jiang Q; Lin Q; Lou CW; Lin JH Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110062. PubMed ID: 31546423 [TBL] [Abstract][Full Text] [Related]
20. Electrodeposition efficiency of Co and Cu in the fabrication of multilayer nanowires by polymeric track-etched templates. Pullini D; Busquets-Mataix D ACS Appl Mater Interfaces; 2011 Mar; 3(3):759-64. PubMed ID: 21341724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]