BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30813099)

  • 1. A comparative study on compressive deformation and corrosion behaviour of heat treated Ti4wt%Al foam of different porosity made of milled and unmilled powders.
    Singh P; Singh IB; Mondal DP
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():918-929. PubMed ID: 30813099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of Ti-Ta-Nb-Mn foams.
    Aguilar C; Guerra C; Lascano S; Guzman D; Rojas PA; Thirumurugan M; Bejar L; Medina A
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():420-31. PubMed ID: 26478329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-memory NiTi foams produced by replication of NaCl space-holders.
    Bansiddhi A; Dunand DC
    Acta Biomater; 2008 Nov; 4(6):1996-2007. PubMed ID: 18678532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titanium-nickel shape memory alloy foams for bone tissue engineering.
    Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel multilayer Ti foam with cortical bone strength and cytocompatibility.
    Kato K; Ochiai S; Yamamoto A; Daigo Y; Honma K; Matano S; Omori K
    Acta Biomater; 2013 Mar; 9(3):5802-9. PubMed ID: 23201016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.
    Nouri A; Hodgson PD; Wen CE
    Acta Biomater; 2010 Apr; 6(4):1630-9. PubMed ID: 19815096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Al addition and space holder content on microstructure and mechanical properties of Ti2Co alloys foams for bone scaffold application.
    Abhash A; Singh P; Kumar R; Pandey S; Sathaiah S; Md Shafeeq M; Mondal DP
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110600. PubMed ID: 32228994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic emission analysis of the compressive deformation of iron foams and their biocompatibility study.
    Park H; Hong K; Kang JS; Um T; Knapek M; Minárik P; Sung YE; Máthis K; Yamamoto A; Kim HK; Choe H
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():367-376. PubMed ID: 30678922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility of 17-4 PH stainless steel foam for implant applications.
    Mutlu I; Oktay E
    Biomed Mater Eng; 2011; 21(4):223-33. PubMed ID: 22182790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.
    Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Mg Powder's Particle Size on Structure and Mechanical Properties of Ti Foam Synthesized by Space Holder Technique.
    Luo H; Zhao J; Du H; Yin W; Qu Y
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of open-pore titanium foam.
    Imwinkelried T
    J Biomed Mater Res A; 2007 Jun; 81(4):964-70. PubMed ID: 17252551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive macroporous titanium implants highly interconnected.
    Caparrós C; Ortiz-Hernandez M; Molmeneu M; Punset M; Calero JA; Aparicio C; Fernández-Fairén M; Perez R; Gil FJ
    J Mater Sci Mater Med; 2016 Oct; 27(10):151. PubMed ID: 27582071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Mo and space holder content on microstructure, mechanical and corrosion properties in Ti6AlxMo based alloy for bone implant.
    Gupta J; Ghosh S; Aravindan S
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111962. PubMed ID: 33812590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications.
    Aslan N; Aksakal B; Findik F
    J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionally graded porous scaffolds made of Ti-based agglomerates.
    Nazari KA; Hilditch T; Dargusch MS; Nouri A
    J Mech Behav Biomed Mater; 2016 Oct; 63():157-163. PubMed ID: 27389321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds.
    Torres-Sanchez C; Al Mushref FRA; Norrito M; Yendall K; Liu Y; Conway PP
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():219-228. PubMed ID: 28532024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures.
    Xiong Y; Qian C; Sun J
    Dent Mater J; 2012; 31(5):815-20. PubMed ID: 23037845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low elastic modulus titanium-nickel scaffolds for bone implants.
    Li J; Yang H; Wang H; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():110-4. PubMed ID: 24268239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.