BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30813106)

  • 1. The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds.
    Gloria A; Frydman B; Lamas ML; Serra AC; Martorelli M; Coelho JFJ; Fonseca AC; Domingos M
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():994-1004. PubMed ID: 30813106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Poly(
    Morouço P; Biscaia S; Viana T; Franco M; Malça C; Mateus A; Moura C; Ferreira FC; Mitchell G; Alves NM
    Biomed Res Int; 2016; 2016():1596157. PubMed ID: 27872844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells.
    Kiziltay A; Marcos-Fernandez A; San Roman J; Sousa RA; Reis RL; Hasirci V; Hasirci N
    J Tissue Eng Regen Med; 2015 Aug; 9(8):930-42. PubMed ID: 24376070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration.
    Averianov I; Stepanova M; Solomakha O; Gofman I; Serdobintsev M; Blum N; Kaftuirev A; Baulin I; Nashchekina J; Lavrentieva A; Vinogradova T; Korzhikov-Vlakh V; Korzhikova-Vlakh E
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2422-2437. PubMed ID: 35618683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties.
    Ferreira J; Gloria A; Cometa S; Coelho JFJ; Domingos M
    J Appl Biomater Funct Mater; 2017 Jul; 15(3):e185-e195. PubMed ID: 28623631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering.
    Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.
    De Santis R; D'Amora U; Russo T; Ronca A; Gloria A; Ambrosio L
    J Mater Sci Mater Med; 2015 Oct; 26(10):250. PubMed ID: 26420041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds.
    Sempertegui ND; Narkhede AA; Thomas V; Rao SS
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.
    Ribeiro JFM; Oliveira SM; Alves JL; Pedro AJ; Reis RL; Fernandes EM; Mano JF
    Biofabrication; 2017 May; 9(2):025015. PubMed ID: 28349900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres.
    Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L
    Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering.
    Jonnalagadda JB; Rivero IV
    J Mech Behav Biomed Mater; 2014 Dec; 40():33-41. PubMed ID: 25194523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.