BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30813221)

  • 1. Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals.
    Javaid R; Sabir A; Sheikh N; Ferhan M
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30813221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formic-acid-induced depolymerization of oxidized lignin to aromatics.
    Rahimi A; Ulbrich A; Coon JJ; Stahl SS
    Nature; 2014 Nov; 515(7526):249-52. PubMed ID: 25363781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidoreductases on their way to industrial biotransformations.
    Martínez AT; Ruiz-Dueñas FJ; Camarero S; Serrano A; Linde D; Lund H; Vind J; Tovborg M; Herold-Majumdar OM; Hofrichter M; Liers C; Ullrich R; Scheibner K; Sannia G; Piscitelli A; Pezzella C; Sener ME; Kılıç S; van Berkel WJH; Guallar V; Lucas MF; Zuhse R; Ludwig R; Hollmann F; Fernández-Fueyo E; Record E; Faulds CB; Tortajada M; Winckelmann I; Rasmussen JA; Gelo-Pujic M; Gutiérrez A; Del Río JC; Rencoret J; Alcalde M
    Biotechnol Adv; 2017 Nov; 35(6):815-831. PubMed ID: 28624475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Delignification of Lignocellulosic Biomass by Recombinant Fungus Phanerochaete chrysosporium Overexpressing Laccases and Peroxidases.
    Coconi Linares N; Fernández F; Loske AM; Gómez-Lim MA
    J Mol Microbiol Biotechnol; 2018; 28(1):1-13. PubMed ID: 29486469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Laccases and Hemeproteins Systems in Bioremediation of Organic Pollutants.
    Lopes JM; Marques-da-Silva D; Videira PQ; Lagoa RL
    Curr Protein Pept Sci; 2022; 23(6):402-423. PubMed ID: 35794739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of phenolic inhibitors from lignocellulose hydrolysates using laccases for the production of fuels and chemicals.
    Fernández-Sandoval MT; García A; Teymennet-Ramírez KV; Arenas-Olivares DY; Martínez-Morales F; Trejo-Hernández MR
    Biotechnol Prog; 2024; 40(1):e3406. PubMed ID: 37964692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and action mechanism of ligninolytic enzymes.
    Wong DW
    Appl Biochem Biotechnol; 2009 May; 157(2):174-209. PubMed ID: 18581264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this.
    Ruiz-Dueñas FJ; Martínez AT
    Microb Biotechnol; 2009 Mar; 2(2):164-77. PubMed ID: 21261911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-degrading enzymes.
    Pollegioni L; Tonin F; Rosini E
    FEBS J; 2015 Apr; 282(7):1190-213. PubMed ID: 25649492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications.
    Jeon JR; Baldrian P; Murugesan K; Chang YS
    Microb Biotechnol; 2012 May; 5(3):318-32. PubMed ID: 21791030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass.
    Li MF; Yang S; Sun RC
    Bioresour Technol; 2016 Jan; 200():971-80. PubMed ID: 26476870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts.
    Leynaud Kieffer Curran LMC; Pham LTM; Sale KL; Simmons BA
    Biotechnol Adv; 2022; 54():107809. PubMed ID: 34333091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps.
    Gasser CA; Čvančarová M; Ammann EM; Schäffer A; Shahgaldian P; Corvini PF
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2575-2588. PubMed ID: 27904924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.
    Mäkelä MR; Marinović M; Nousiainen P; Liwanag AJ; Benoit I; Sipilä J; Hatakka A; de Vries RP; Hildén KS
    Adv Appl Microbiol; 2015; 91():63-137. PubMed ID: 25911233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the role of media nitrogen in augmenting the production of lignin-depolymerizing enzymes by white-rot fungi.
    Pradeep Kumar V; Sridhar M; Ashis Kumar S; Bhatta R
    Microbiol Spectr; 2023 Sep; 11(5):e0141923. PubMed ID: 37655898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.