These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 30813259)

  • 1. FPGA-Based Hybrid-Type Implementation of Quantized Neural Networks for Remote Sensing Applications.
    Wei X; Liu W; Chen L; Ma L; Chen H; Zhuang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Quantized CNN-Based Microfluidic Lensless-Sensing Mobile Blood-Acquisition and Analysis System.
    Liao Y; Yu N; Tian D; Li S; Li Z
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI.
    Pistellato M; Bergamasco F; Bigaglia G; Gasparetto A; Albarelli A; Boschetti M; Passerone R
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Acceleration of 2-D and 3-D CNNs on FPGAs Using Static Block Floating Point.
    Fan H; Liu S; Que Z; Niu X; Luk W
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4473-4487. PubMed ID: 34644253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hardware-Friendly Low-Bit Power-of-Two Quantization Method for CNNs and Its FPGA Implementation.
    Sui X; Lv Q; Bai Y; Zhu B; Zhi L; Yang Y; Tan Z
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Post-training Quantization Method for the Design of Fixed-Point-Based FPGA/ASIC Hardware Accelerators for LSTM/GRU Algorithms.
    Rapuano E; Pacini T; Fanucci L
    Comput Intell Neurosci; 2022; 2022():9485933. PubMed ID: 35602644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameterizable Design on Convolutional Neural Networks Using Chisel Hardware Construction Language.
    Madineni MC; Vega M; Yang X
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FPGA-based neural network accelerators for millimeter-wave radio-over-fiber systems.
    Lee J; He J; Wang K
    Opt Express; 2020 Apr; 28(9):13384-13400. PubMed ID: 32403814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Heterogeneous Hardware Accelerator for Image Classification in Embedded Systems.
    PĂ©rez I; Figueroa M
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern Classification Using Quantized Neural Networks for FPGA-Based Low-Power IoT Devices.
    Biswal MR; Delwar TS; Siddique A; Behera P; Choi Y; Ryu JY
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An FPGA-Based YOLOv5 Accelerator for Real-Time Industrial Vision Applications.
    Yan Z; Zhang B; Wang D
    Micromachines (Basel); 2024 Sep; 15(9):. PubMed ID: 39337824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lightweight Detection Method for Remote Sensing Images and Its Energy-Efficient Accelerator on Edge Devices.
    Yang R; Chen Z; Wang B; Guo Y; Hu L
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IVS-Caffe-Hardware-Oriented Neural Network Model Development.
    Tsai CC; Guo JI
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5978-5992. PubMed ID: 34310321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Inference With 2D Convolutional Neural Networks on Field Programmable Gate Arrays for High-Rate Particle Imaging Detectors.
    Jwa YJ; Di Guglielmo G; Arnold L; Carloni L; Karagiorgi G
    Front Artif Intell; 2022; 5():855184. PubMed ID: 35664508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resources and Power Efficient FPGA Accelerators for Real-Time Image Classification.
    Kyriakos A; Papatheofanous EA; Bezaitis C; Reisis D
    J Imaging; 2022 Apr; 8(4):. PubMed ID: 35448240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Learning Framework for n-Bit Quantized Neural Networks Toward FPGAs.
    Chen J; Liu L; Liu Y; Zeng X
    IEEE Trans Neural Netw Learn Syst; 2021 Mar; 32(3):1067-1081. PubMed ID: 32287015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed large-scale graph processing on FPGAs.
    Sahebi A; Barbone M; Procaccini M; Luk W; Gaydadjiev G; Giorgi R
    J Big Data; 2023; 10(1):95. PubMed ID: 37283690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Convolutional Neural Network Processor Based on FPGA Resource Multiplexing Architecture.
    Yan F; Zhang Z; Liu Y; Liu J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation.
    Sui X; Lv Q; Zhi L; Zhu B; Yang Y; Zhang Y; Tan Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training high-performance and large-scale deep neural networks with full 8-bit integers.
    Yang Y; Deng L; Wu S; Yan T; Xie Y; Li G
    Neural Netw; 2020 May; 125():70-82. PubMed ID: 32070857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.